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Abstract— As Unmanned Aerial Vehicles (UAVs) become
more commonplace, there is a growing need for safer flight
control software that allows for the UAV to understand and
autonomously react to various flight anomalies. Decision-
making software must allow the aircraft to perform tasks such
as detect and avoid, as well as respond to critical failures
mid-flight. This paper develops a ground impact and hazard
mitigation (GIHM) module that integrates the following: (1)
consideration of flight failure modes, (2) generation of feasible
ground impact footprints based on glide equations, (3) selection
of safest response ground impact sites based on a high resolution
LandScan USA population dataset, and (4) controlled descent to
selected site. For a sample population distribution, integration
of GIHM with standard UAV flight software shows a reduction
of 20.396 casualties per 100,000 flight hours compared to the
flight software without GIHM. A 96% reduction in fatalities
per flight hour resulted from incorporating this module, which
brings UAVs closer to being safe enough to be integrated into
the National Airspace System (NAS).

I. INTRODUCTION

Software for the control of Unmanned Aerial Vehicles
(UAVs) has become increasingly sophisticated and elaborate
over the past decade. The major focus on such software, how-
ever, has been on automatic control, not autonomous control
[1]. Automatic control provides the necessary automation of
nominal operational control, while autonomous control must
allow for a level of autonomy that predicts and responds to
any event and condition [1]. There is still a critical need
for fully developed safety software within the UAV system
architecture that can make informed decisions in the presence
of flight anomalies [2].

Two major hazards associated with UAV operations are
collisions between the UAV and a Conventionally-Piloted
Aircraft (CPA), and impact of the UAV with terrain, people,
or structures [3]. These hazards pose a large risk to the
general public, with casualties being the worst-case scenario.
UAVs can have accident rates as high as 32 accidents per
100,000 flight hours. This can be as high as 32 times higher
than the accident rates for small general aviation aircraft,
and 3,200 times higher than large airliners [2]. With UAV
accident rates significantly higher than that of CPAs, there is
a clear need for additional safety measures for UAV control
software and hardware before they can be integrated into the
National Airspace System (NAS).
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A 2012 Congressional Research Service (CRS) Report
detailed the required technology and standard procedures for
safe UAV control software. The report requires UAVs to have
technology and standard procedures for sensing and avoiding
other air traffic under all possible scenarios, including loss
of communications [4]. In addition to sensing and avoiding
capabilities, the UAV must be able to autonomously return
to base or determine a safe path to crash [4]. Furthermore, as
detailed in [5], all UAVs must operate in restricted airspace
or at extremely low altitudes. In order to integrate UAVs into
the NAS, airborne safety must be ensured by avoiding midair
collisions and guarding against ground impact. The focus of
this paper is the development and integration of a module
that guards against casualties due to ground impact.

A wide body of literature exists in assessing the collective
risk UAVs pose, both in-air [6][7][2], and on the ground
[6][7][8][9][10]. Ground risk models can be categorized into
the following: failure mode, impact location, recovery, stress,
exposure, incident stress, and harm [11]. Of these categories,
the most relevant to our work are failure and impact location
models.

Characterizing failure modes is an important aspect in
guarding against ground impact because if a flight anomaly
and the effect of that anomaly on the aircraft states are
known, then the aircraft’s reachable ground footprint can
be calculated using gliding flight equations. The failure
mode determines the capabilities and maneuverability of the
aircraft, which must be considered when developing ground
footprint models. For UAVs, these modes may include actua-
tor failures, sensor failures, engine malfunction, loss of radio
link and GPS, as well as structural damage such as a broken
propeller, wing, etc., caused by unanticipated flight events
[12]. Our paper focuses on two particular modes: engine
malfunction and actuator failures.

Regarding impact location models, previous works have
developed reachable ground footprints. [13] investigated the
ability of a fixed-wing aircraft to glide to a designated
emergency landing area. The authors in [3] and [14] use 6
degree-of-freedom models to develop ground impact models
for determining the reachable ground envelope of UAVs, and
[15] developed an emergency no-thrust flight trajectory plan.
None of these works, however, incorporate flight control
software into these models. They furthermore do not examine
collective risk profiles that consider population data.

To understand the collective risk a UAV poses to a given
area, accurate population data can be used. Previous work has
used census data or local tax data [6][7][8][9][10]. However,
such information can be hard to acquire and can be largely
unrepresentative of the true population count for a given
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area. [16] used demographic population data for entire cities
and states to generate population data for use in developing
collective risk profiles. Using data at such large scales can
result in great uncertainty when finer resolution population
data is required. For this reason, LandScan USA data was
used to obtain accurate population data. The LandScan USA
dataset represents ambient population at 90 m resolution
anywhere in the United States [17]. In previous literature,
Landscan data has been used for mapping global impacts
from climate change, building and evaluating population
density models, mapping spread of dangerous diseases, and
much more [18][19][20]. However, to our knowledge, Land-
Scan data has never been used for the purpose of determining
the lowest risk ground impact point for a UAV experiencing
a hazardous flight anomaly.

Given the work described above, there is still a need
for an all-encompassing ground impact mitigation system.
The contribution of this paper lies in the integration of a
novel ground impact and decision making model with a
high resolution population dataset to provide high accuracy
collective risk profiles for safer UAV response. Furthermore,
this work integrates with a high-fidelity flight software that
includes a mission plan, a path planning module, 6-DOF
aircraft model, and flight controller. This integration of the
reachable footprint and risk distribution profiles with the
flight control software demonstrates the potential real-life
implications of this work. Simulations provide a look into
how UAVs react to these critical flight anomalies. For our
mission configuration, we showed that with GIHM, fatalities
per flight hour were decreased by 96%. The remainder of
this paper is structured as follows: Section II describes the
architecture and requirements of GIHM, Section III develops
the feasible ground impact footprint models, Section IV
details the fault modes and safest response, and Sections V
and VI present a case study, discussion, and conclusions.

II. CONTEXT-LEVEL ARCHITECTURE AND
REQUIREMENTS

A. Context-Level Architecture

Fig. 1 shows the system domain block definition diagram
(BDD) for the ground impact and hazard mitigation (GIHM)
module. The diagram provides a definition of the system and
its environment in terms of the principal elements. GIHM
is comprised of three sub-modules: fault mode detection,
UAV ground impact, and safest response. The GIHM system
interacts with its external systems, which consists of the UAV
flight software, flight states, and the LandScan population
dataset. The user initiates the flight by entering the mission
plan in the form of waypoints and uploads the area of
operation data from LandScan.

Fig. 2 details the system context BDD for GIHM. This
BDD identifies how the system interacts with its user and
external systems, its system boundaries, and state flows (data
exchanged between blocks) between the system of interest,
user, and external systems. The state flows for GIHM include
the mission plan in the form of waypoints, UAV states sent
to GIHM (GPS coordinates, airspeed, roll, pitch, and yaw),

Fig. 1. GIHM system domain definition BDD. Establishes the domain of
the system, which contains the GIHM system, user, and external systems.

Fig. 2. GIHM system context BDD. Shows how the system interacts with
its user and external systems.

and updated UAV states sent to the user. While GIHM was
used fully autonomously in simulation (no input from the
user after flight initiation), the level of autonomy can be
adjusted to allow the user to be involved in the decision
to use the new priority waypoints generated by GIHM. The
system context BDD also shows that the UAV flight software
sends data real-time to GIHM and GIHM determines if there
is a critical flight anomaly with the goal of minimizing its
ground impact. Before flight, the user selects from LandScan
data the area of operation for the UAV and uploads that data
for use in case of a flight anomaly. From this data, GIHM
can send new waypoints to the UAV flight software, where
the software executes the new mission plan.

B. System Requirements

Collective risk is the most commonly used metric in UAV
ground models because it describes the aggregate risk to a
population [3]. This metric has units of casualties per flight
hour and shall be reduced comparing UAV flight control
software with and without GIHM. GIHM is designed to
reduce the number of casualties from UAV operations, and
thus its collective risk. To accomplish this, the following
system requirements need to be established where GIHM
shall:

• Determine UAV flight states (e.g., GPS coordinates,
airspeed, roll, pitch, yaw)

• Predict the feasible ground impact footprint (FGIF),
• Use the FGIF to extract local population count map

from LandScan data,
• Process LandScan local population count map to extract

lowest hazard zones as a candidate for landing,
• Select safest hazard response,
• Generate revised UAV flight plan to implement safest

response.
When an anomaly is detected by the decision making

module, GIHM must analyze the anomaly and determine
which fault mode the aircraft is in. One approach is to detect
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an anomaly by comparing current measured UAV states
to expected ranges of vehicle states, e.g. airspeed, thrust,
Euler angles, angular rates, system components and actuator
deflections [21]. If any of the values are deemed to be out of
their expected operating range, a corresponding fault mode
is diagnosed. An inoperative engine will cause a decrease
in thrust, causing the aircraft to deviate from its course and
may pose a safety threat to nearby population in urban and
suburban areas. For this work, the following two fault modes
were considered:

1) Engine failure - UAV engine malfunction, resulting in
no thrust.

2) Engine, rudder, and ailerons failure - UAV engine,
rudder, and ailerons control surfaces failure. Ailerons
and rudder control surfaces are stuck close to trim
deflection.

With the states of the UAV known, and after detecting and
diagnosing a flight anomaly, GIHM then predicts the FGIF
using gliding flight equations and current UAV states. The
local population data from LandScan is extracted, which is
preloaded by the user before flight is initiated. Population
data is then processed, with the lowest hazard zones being
identified. With the lowest hazard landing areas known,
GIHM selects the safest hazard response. The safest response
consists of a new set of waypoints that the UAV follows to
land or crash. This response is a function of the collective
risk in the identified reachable zone and whether the starting
or ending waypoints are within the FGIF. Finally, GIHM
sends the new mission waypoints to the UAV flight control
software for implementation. Because this work does not
focus on landing site determination, the waypoint that GIHM
provides can be considered a crash point.

C. GIHM Integration with UAV Flight Software

GIHM interfaces with a 6-DOF flight simulation software
of a small, fixed-wing UAV, developed in Matlab/Simulink.
Fig. 3 shows how GIHM interfaces with the flight simulation
software. The UAV states are sent to GIHM, where GIHM
determines whether the UAV is in a fault mode. In this work,
a flight anomaly is detected when the UAV aircraft states are
outside of a predetermined nominal range. If a fault mode
is detected, GIHM sends back new mission GPS coordinates
to the UAV flight control software. These new coordinates
replace old mission waypoints.

The standard flight simulation architecture contains a path
planning block, control system block, and aircraft block. The
path planning block takes the initial 3D mission waypoints
and calculates desired values so that the UAV can reach
them. These values go into the autopilot which uses altitude
and lateral-directional control for trajectory tracking via PID
controllers. It then uses the desired navigation requirements
to output actuator commands to the UAV. Finally, the air-
craft block, which houses the UAV aircraft model, takes in
actuator commands to update the new system states. The
aircraft model uses aerodynamic forces and moments, and
incorporates environmental factors related to altitude for air
density and dynamic pressure calculations.

III. FEASIBLE GROUND IMPACT FOOTPRINT

The FGIF of an aircraft is the area on the ground where
the UAV can reach. Due to the choice of simulating a
prevailing engine failure, glider equations are used for the
FGIF calculations. Fig. 4 depicts the FGIF concept and axis
representation used in development of the FGIF models.
Variables dx and dy represent displacements in the longitudi-
nal and latitudinal direction, respectively, and dz represents
displacement in altitude. To calculate distance traveled in
the x and y directions, gliding flight equations were used to
model UAV flight performance. These equations were then
iterated over an aircraft’s 360° of maneuverability to obtain
a full reachable envelope.

A. Gliding Flight

Calculation of the FGIF requires the vehicle’s initial lati-
tude, longitude, altitude, airspeed, roll angle, pitch angle, and
yaw angle. These values are obtained from the UAV flight
control software. The gliding flight equations are derived
from the following equations of motion in the aircraft’s
longitudinal, lateral, and vertical axis respectively [13]:

m
dv

dt
= −mgsin(θ) −D + Tcos(θ), (1)

mgcos(θ)sin(φ) = mvψ̇cos(θ)cos(φ), (2)

mgcos(θ)cos(φ)−L−Tcos(θ) = −mvψ̇cos(θ)sin(φ), (3)

where φ, θ, and ψ are roll, pitch, and yaw angle, respectively.
ψ̇ is the turn rate of the aircraft, m is the aircraft’s mass, g
is acceleration of gravity, D is drag, and L is lift, and T is
thrust. From here we make the following assumption: for an
engine out case, we set T = 0, resulting in a constant speed
and gliding flight. If a small glide angle approximation is
used (which is the case for most aircraft), the gliding flight
equations are simplified to:

0 = −mgsin(θ) −D, (4)

tan(φ) =
vψ̇

g
, (5)

mgcos(φ) − L = −mvψ̇sin(φ). (6)

These are the three primary equations of motion for gliding
flight in the aircraft’s longitudinal, lateral, and vertical axis.

Fig. 3. GIHM integration with UAV flight software. The components
inside the dashed red box contain the nominal UAV flight software archi-
tecture. GIHM takes the UAV system states as an input and outputs new
mission waypoints if a flight anomaly is detected.
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Fig. 4. Depiction of the FGIF and coordinate system. dx, dy , and dz
represent displacement in the longitude, latitude, and altitude directions,
respectively. The UAV’s reachable footprint is represented by the semi-circle
labeled FGIF.

B. Footprint Calculation

There are two phases to gliding flight: a turning phase and
a straight line phase.

1) Turning phase: During a turn, an aircraft’s airspeed
will increase and height will decrease. To calculate the height
loss during the turning phase, we use

∆hturn = Larc
vsφ
vφ

, (7)

where vsφ is the sink rate of the aircraft in the turning phase,
vφ is airspeed during the turning phase, and Larc is the
arc length of the circle made by the turn. vφ and vsφ are
calculated using the following equations:

vφ = vsec
1
2 (φ), (8)

vsφ = vssec
3
2 (φ). (9)

Larc is calculated using the following equations:

Larc = Rdψ, (10)

R =
v2

gtan(φ)
, (11)

where R is the radius of the circle and dψ is the total
change in heading. dψ is bounded between ±π to account
for an aircraft’s ability to turn in the positive and negative
directions.

An aircraft’s rate of sink, vs, is the amount of height loss
per unit time the aircraft is flying during gliding flight. vs is
a function of the aircraft’s drag, weight, and velocity through
the following equation:

vs =
Dv

W
. (12)

To calculate drag, we can modify equations from [22],
resulting in the following expression:

D = 0.5Cdρ0v
2S, (13)

Cd = Cdo +
kC2

L

πAr
, (14)

where ρ0 is the density of air at sea level, S is the wing
area, Cdo is the aircraft’s profile drag, and k is the induced
drag factor, determined by the aircraft wing dimensions,
configuration, Reynolds Number and Mach Number. Ar is

Fig. 5. Glide range derivation representation, which includes the turning
phase and straight line phase.

the aircraft’s wing aspect ratio and CL is the coefficient of
lift.

To calculate CL, it was assumed that the airfoil was
cambered and had a thin airfoil. The following equation was
used to calculate CL, assuming a thin airfoil:

CL = CLo + 2πα, (15)

where CLo is the aircraft’s coefficient of lift at zero angle of
attack and α is the aircraft’s angle of attack. This equation
is valid for small angle of attack and since the aircraft is not
approaching stall conditions, the aircraft’s angle of attack
will be within the linear region of the angle of attack vs.
coefficient of lift relationship.

Once the height loss during the turning phase is calculated,
we next determine how far in the x and y directions the
aircraft travels during the turning phase (dx,t, dy,t). Fig. 5
shows how dx,t and dy,t can be calculated based on simple
geometric ideas. From this figure, we see that

dx,t = Rsin(dψ), (16)

dy,t = Rcos(dψ). (17)

With the total distance traveled during the turning phase
known, the next phase is straight level flight.

2) Straight level phase: Distance traveled during straight
level flight (dx,s, dy,s) is calculated using similar geometry
to that of the turn phase:

dx,s = Dglidesin(dψ), (18)

dy,s = Dglidecos(dψ). (19)

Total ground distance traveled in the straight level flight,
Dglide is calculated using the following equation:

Dglide = (hi − ∆hturn)
v

vs
, (20)

where hi is the aircraft’s initial height before entering gliding
flight. The loss of height during a turn, ∆hturn, must not
exceed the aircraft’s initial height, which is an important
condition when determining where the aircraft can maneuver
to.

By adding total distances traveled during the turning
and straight line phases, the total distance traveled in each
direction can be calculated. This results in the final two
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equations for distance traveled in the xy directions during
gliding flight:

dx = Rsin(dψ) +Dglidesin(dψ), (21)

dy = Rcos(dψ) +Dglidecos(dψ), (22)

where dx and dy are the coordinates at the end of the glide,
relative to the initial position and heading of the aircraft.
The FGIF is simply comprised of all of the possible dx and
dy combinations that the aircraft can reach. It is important
to note that for this work it is assumed that there is no
wind, which would otherwise have an effect on the gliding
performance of a UAV.

Finally, it is important to consider whether an aircraft
can actually execute the required turns when finalizing its
FGIF. To account for the situation where the UAV reaches
the ground during the turning phase, the following condition
is required: if ∆hturn > hi then the aircraft cannot execute
that turn, resulting in the corresponding dx and dy values
being excluded in the FGIF.

IV. FAULT MODES AND SAFEST RESPONSE

A. Fault Modes

Now that models are established for gliding flight, we
investigate the effects the two fault modes have on gliding
performance. Faults are defined as unpermitted deviations
of at least one characteristic property or parameter of the
aircraft system from the acceptable or standard condition
[21]. The impact of a fault can be small but it could also
lead to overall system failure. After failure detection, a safe
autonomous system needs to be able to classify the fault into
an appropriate category in order to mitigate its effects. Faults
are classified according to where they occur in the system,
i.e. sensors, actuators and other components. Faults can also
be classified as abrupt, incipient, or intermittent, with respect
to their time characteristics.

In this work, we have considered an abrupt power system
fault and a combined abrupt power system/actuator fault.
The actuator fault implemented in simulation consists of
aileron and rudder surfaces that got stuck close to trim value
after a servo failure and remain at the deflections they had
at the time of the fault [12]. It was assumed in this work
that the UAV maintains some level of controllability when
experiencing these faults.

1) Fault Mode 1, Engine Failure: In this fault mode, it
is assumed that the UAV cannot accelerate but can change
its heading and pitch angle. Because of this, the dx and dy
equations derived above are used in their entirety to calculate
the FGIF.

2) Fault Mode 2, Engine, Rudder, and Ailerons Failure: In
this fault mode, it is assumed that the UAV cannot accelerate
or change its heading, but can pitch. When the ailerons
and rudder are stuck near trim value, the UAV is unable
to change its heading. If the aircraft does not have heading
control, it cannot execute a turning phase. Because the UAV
cannot change heading, dψ = 0, which results in only straight
level flight. From this, the following modified gliding flight

equations must be used to reflect that only straight level
gliding flight can be achieved:

dx = Dglidesin(
π

2
− ψ), (23)

dy = Dglidecos(
π

2
− ψ), (24)

Dglide = hi
v

vs
. (25)

The Dglide term was modified to exclude the ∆hturn because
the aircraft is unable to turn. Notice that in the equations for
dx and dy the dx,t and dy,t terms were removed because the
aircraft is not turning while experiencing this fault mode.
This results in a straight line reachable footprint.

Fig. 6 shows the FGIF of an aircraft traveling due north,
experiencing Fault Mode 1 at different heights. The aircraft’s
initial position when experiencing the fault mode is at the
origin of the plots. It can be seen that as the initial height
of the aircraft increases, so does the FGIF (represented by
the light blue shaded area of each plot). This is because the
aircraft is able to glide for a longer time, resulting in a larger
footprint.

Fig. 7 shows the FGIF of an aircraft traveling due north,
experiencing Fault Mode 1 at different roll angles. The roll
angles are only for the turning phase of gliding flight. The
aircraft’s roll angle is assumed to be 0 during the straight
level phase. At smaller roll angles, the aircraft cannot execute
turns to larger yaw angles fast enough. As a result, the
aircraft cannot reach those larger angles before landing. This
is seen in Fig. 7a where the aircraft experiences the fault
mode while at a small roll angle. Because of this small roll
angle, the FGIF is only part of a circle. As the roll angle
increases, the aircraft can more quickly maneuver to larger
yaw angles. This is seen in Fig. 7b and Fig. 7c where the
aircraft has a larger roll angle and can reach the entire ±π
range of yaw angles.

The FGIF of an aircraft experiencing the engine, rudder,
and ailerons failure fault mode would simply be a line.
Because there is no turning phase for this fault mode, the
UAV cannot change its heading and therefore would only
be able to fly at its current heading. However, the aircraft
can still change its angle of attack using its elevator, which
allows a straight-line footprint to be made, rather than an
area.

B. Safest Response

With a model developed for the FGIF, we next develop
a procedure for choosing the safest response. A searching
algorithm was developed, which used the FGIF and UAV’s
current position to parse the LandScan USA data for the
area in which the UAV could maneuver to. It then extracts
the local minimum population value for which the UAV
would pose the least collective risk. [N.B. The LandScan
dataset is restricted for use by government agencies only.
We use simulated data at this resolution to show how this
dataset can be integrated.] The data structure of LandScan is
a matrix whose rows and columns represent latitudinal and
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(a) (b) (c)

Fig. 6. Effect of aircraft height on FGIF for Fault Mode 1: (a) Alt=50 m, roll=45°. (b) Alt=150 m, roll=45°. (c) Alt=300 m, roll=45°. The light blue
shaded area is the FGIF.

(a) (b) (c)

Fig. 7. Effect of aircraft roll angle on FGIF for Fault Mode 1: a) Alt=150 m, roll=5°. b) Alt=150 m, roll=11°. c) Alt=150 m, roll=25°. The light blue
shaded area is the FGIF.

longitudinal coordinates. The value of each matrix cell is the
population for that range of geodetic coordinates. LandScan
USA data has some inherent uncertainty in its values, but
the uncertainty is not addressed or quantified in the dataset’s
documentation.

Collective risk, also known as casualty expectation (CE),
describes the aggregate risk that a UAV poses to a population
of people. It is measured by expected number of casualties
per flight hour [3]. Collective risk is calculated using the
following equations [7]:

CE = PF · PF · PD ·AL · PK · S, (26)

AL = (L+DG+DS + 2B) · (W + 2B). (27)

Definitions and the domain of variables for Eqns. 26 and
27 can be found in Table I. Probability of failure (PF ) is ex-
pected number of mishaps per flight hour, population density
(PD) is population count per square meter, probability of a
fatality (PK) is the probability of a piece of the UAV striking
a pedestrian and leading to a fatality, and shelter factor (S) is
an estimate of how exposed a population is to falling vehicles
or debris, with a factor of 0 and 1 representing completely
sheltered and completely exposed, respectively. Lethal area
(AL) is the area of which a fatality may occur when a
vehicle or debris falls. Length (L) and width (W ) refer to
the wingspan and length of the aircraft, respectively, buffer
(B) is a safety factor, glide distance (DG) is the distance
traveled beginning when the UAV is at an altitude of 6 ft
and ending when it reaches the ground, and distance to stop
(DS) is the total distance from when the UAV reaches the
ground to when it comes to a complete stop. Because it is
assumed that the UAV will crash and not land, DS = 0.

Lethal area, length, width, glide distance, and distance to
stop are all specific to the aircraft and aircraft dynamics.

TABLE I. Definitions of variables in casualty expectation equations.

Variable Definition Domain

CE casualty expectation [0, 6.43] fat/flt hr
PF probability of failure (0, 1]
PD population density per square meter [0, 0.022] pop/m2

AL lethal area 77.75 m2*
PK probability of fatality [0, 1]
S shelter factor [0, 1]
L length 1.83 m*
W width 1.41 m*
B buffer 1 ft

DG glide distance at 6 ft altitude 8.02 m*
DS distance to stop 0 m

*Starred terms do not have a range of values because they are highly
specific to the aircraft’s dynamics. Representative values were given for

the UAV simulated in this work.

The upper range of population density is determined by the
highest population density in the United States, located in
Guttenberg, New York City. The resulting casualty expecta-
tion values can be as low as 0 fatalities per flight hour and as
high as 6.43 fatalities per flight hour. For large airliners, the
average casualty expectation is 0.01 fatalities per 100,000
flight hours and that of small general aviation aircraft is
0.1 fatalities per 100,000 flight hours [2]. However, the
casualty expectation will be much higher than these values
for UAVs because casualty expectation is proportional to
probability of failure, and manned aircraft have very small
probabilities of failure, approximately 0.000064%, compared
to unmanned aircraft, approximately 2.17% [23][24]. This
leads to a collective risk for small UAVs that is expected to
be nearly 100,000 times larger than that of a manned aircraft.

For the purposes of this paper, probability of failure
was assumed to be 0.0217, consistent with the maximum
probability of failure for a small UAV defined by Sean
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et al. [24]. The population density was found by dividing
the population count from LandScan data by its respective
area. The probability of fatality was found using methods
explained by Range Safety Group, which was a function of
the mass and speed of the aircraft [7]. A conservative shelter
factor of 1 was used, representing a fully exposed population.
Glide distance was calculated using the following equations
[25]:

DG = tan(
Hp

γ
), (28)

γ = tan−1(
Hp

d
), (29)

where γ is glide angle for this specific calculation, Hp is the
height of an average person and d is the distance traveled
from when the vehicle is at height Hp until when it hits the
ground. This glide distance is different than glide distance
derived in section III because this is the glide distance
starting when the vehicle is at height Hp, not its mission
plan height. By knowing the collective risk profile within
the FGIF, the UAV is now able to find the point of local
minimum risk and decide if the safest response is to fly
to that minimum risk waypoint. Note that this model for
CE does not account for uncertainties in population density,
probability of failure, probability of fatality, etc. Uncertainty
analysis is out of the scope of this work but would refine
risk and fatality estimates.

While LandScan data is always available, it may not
always be required in determining the safest response. If the
mission endpoint is within the FGIF of the aircraft then the
UAV should naturally land at that waypoint as its the safest
response. Similarly, if the mission endpoint is not within the
FGIF, but the mission start is, then the aircraft should fly
back to where it started.

V. CASE STUDY AND DISCUSSION

A. Problem Setup

In this case study, a small fixed-wing UAV was modeled.
The aerodynamic characteristics used for the small UAV are
seen in Table II.

TABLE II. Characteristics of the General Aviation UAV used in simula-
tion.

Variable Definition Value

v aircraft velocity 20 m/s
αmax max angle of attack 6.25°
m maximum take off weight 1.2 kg
Lw wingspan 1.4 m
Tw wing taper 1.95
AR wing aspect ratio 6.4
wc wing aerodynamic chord 0.22 m

airfoil wing airfoil SD7037
CLi, CDi, CMi Lift, Drag, Moment coeffs. derivs. from airfoil

The UAV’s nominal mission plan contains five waypoints
and a home waypoint. The waypoints approach the Univer-
sity of Maryland, and a given fault mode is induced into

the simulation 25, 45, 63, 80, 90, and 110 seconds into the
simulation. These times were chosen to obtain a wide range
of flight scenarios with the UAV at different points during
its mission.

Model LandScan data was created in Matlab and was the
same structure as LandScan USA data, but with a resolution
of 30 m. The better resolution was required to show the
utility of GIHM for small UAVs because of the size of the
FGIF during simulations. Fixed blocks of higher population
were created to mimic higher population expected in clusters
of buildings at the University of Maryland. The dataset was
preloaded into the UAV simulation and was parsed in real
time when a fault mode was detected.

B. Results and Discussion

Table III summarizes the results of simulations for both
fault modes at five fault mode times. By comparing the
average casualty expectation with GIHM to the average
casualty expectation without GIHM, we can conclude that the
average casualty expectation is 20.396 fatalities per 100,000
flight hours lower with the GIHM module than without the
module. For this mission configuration, this equates to an
96% decrease in fatalities per flight hour. Note that the units
in Table III have units of fatalities per 100,000 flight hours,
whereas CE has units of fatalities per flight hour in Table I.
According to the FAA, a large airliner shall have a casualty
expectation of 1 fatality per 1,000,000 flight hours, which is
still far below the average casualty expectation value for the
UAV with GIHM. This is because the probability of failure
for this simulation is 2.17%, which is nearly one million
times higher than the probability of failure for a large airliner
(0.000064%).

TABLE III. Simulation results comparing CE with and without the GIHM
module for both fault modes at six different fault times. CE has units of
fatalities per 100,000 flight hours.

Fault Mode Fault Time (s) CE With GIHM CE Without GIHM

1 25 0.000 9.690
2 25 1.124 8.471
1 45 0.024 13.350
2 45 2.709 11.670
1 63 0.017 61.650
2 63 1.124 53.900
1 80 0.017 15.760
2 80 3.698 13.780
1 95 0.017 19.400
2 95 4.509 16.960
1 110 0.000 18.140
2 110 1.157 15.860

Average 1.157 21.533

Nominal Flight: Fig. 8 and Fig. 9 show the flight simula-
tion trajectory and altitude profile of the UAV under nominal
operating conditions. The simulation terminates after the
UAV reaches the fifth (final) waypoint. The plots of trajectory
show the relative distance the UAV travels compared to the
UAV’s home waypoint. On all of the trajectory plots, the heat
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Fig. 8. UAV trajectory for when there is no fault mode detected. The
aircraft starts from the home waypoint at the origin and travels to the
waypoints in numerical order.

Fig. 9. UAV altitude plot as a function of time for when there is no fault
mode detected. The numbered circles show the five mission waypoints. The
UAV begins on the ground at the start, climbs to 150 m, then descends back
to the ground when approaching waypoint 5.

map represents population count in that node with darker
nodes representing highly populated areas. The population
heat map is pixilated because the data was generated using
randomized values. The randomized values were generated
based on average population values in the University of
Maryland area. When LandScan USA data is used, it can
easily be integrated and the heat map of the population
will be smoother and more accurate. It can be seen from
the trajectory plot that the actual flight path of the UAV is
very close to the shortest path, indicating an effective control
scheme. Fig. 10 shows the Euler angle and Euler rate profiles
for the nominal flight simulation. These will be used for
comparison to the flight states of the UAV experiencing the
two fault modes.

Fault Mode 1: Fig. 11 and Fig. 12 show the simulated
flight trajectory and altitude profile of the UAV experiencing
the engine out (Fault Mode 1) flight anomaly 80 s after
mission plan initiation. At 80 s, as the UAV just passes
waypoint 3, the engine out fault mode is detected, which
results in the change of heading and change in mission
plan. Fig. 12 also shows the throttle profile of the UAV
experiencing Fault Mode 1 80 s after mission initiation. At 80
s, the throttle is at 0, which is consistent with the condition
of the engine out case. From the altitude and trajectory plots,
it can be concluded that the UAV found a minimum ground
impact point and is flying to that point. The trajectory plot
shows where the UAV would have landed compared to where
it was able to maneuver. From the heat map, the new landing

Fig. 10. UAV Euler angles and rates profiles for when there is no fault
mode detected. Angles are in radians. The dashed line on the Euler angle
plots show the controller commands and the solid line shows the actual
aircraft states.

Fig. 11. UAV trajectory for when Fault Mode 1 is activated at 80 s.
The aircraft starts from home at the origin and travels to the waypoints
in numerical order until the fault mode is detected. New landing waypoint
is the waypoint sent by GIHM and old landing waypoint is where the UAV
would have landed without GIHM.

waypoint is in a less populated spot compared to the old
landing point. A safety factor of 30 m was included so
the UAV is not landing right next to the highly populated
cluster of buildings. Fig. 13 shows the Euler angles and
Euler rates for the UAV experiencing Fault Mode 1 80 s
after flight initiation. Note the significant change in Euler
angles and Euler rates at time 80 s, which is a result of the
aircraft drastically changing heading to fly to the new priority
waypoint generated by GIHM.

Fault Mode 2: Fig. 14 and Fig. 15 show the simulated
flight trajectory and altitude profile of the UAV experiencing
the engine, rudder, and ailerons failure (Fault Mode 2) flight
anomaly 63 s after mission plan initiation. At 63 s, the UAV
is almost at waypoint 3. At 63 s, the engine, rudder, and
aileron failure fault mode is detected, which results in the
change in mission plan. Fig. 15 also shows the throttle and
rudder profiles of the UAV experiencing Fault Mode 2 63 s
after mission initiation. It can be seen that at 63 s, throttle
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Fig. 12. UAV altitude and throttle command profiles for when Fault Mode
1 is activated at 80 s. The numbered circles show the mission waypoints,
with the one labeled ’new’ representing the new landing waypoint generated
by GIHM. The red circle represents when the fault mode was detected. The
aircraft starts on the ground, climbs to 150 m, then descends when the fault
mode is detected at 80 s.

Fig. 13. UAV Euler angles and rates profiles for when Fault Mode 1 is
activated at 80 s. Angles are in radians. The dashed line on the Euler angle
plots show the controller commands and the solid line shows the actual
aircraft states. The aircraft has drastic changes in all three Euler angles and
rates when the fault mode is detected at 80 s because of the maneuvers
made by the UAV to reach the safest landing point.

and rudder are 0, which is consistent with the condition of
Fault Mode 2. From the altitude and trajectory plots, it can
be concluded that the UAV found a minimum ground impact
point and is flying to that point. The new priority waypoint
is at the same heading as the UAV when the fault mode was
detected because the UAV is unable to change its heading
due to the rudder and aileron being inoperable. Fig. 14 shows
where the UAV would have landed compared to where it was
able to maneuver to. From the heat map, the UAV is able
to change its pitch angle to guide the aircraft to the ground
before it crashes in the highly populated group of buildings,
which is where the UAV would have landed without GIHM.

Fig. 16 shows the Euler angles and Euler rates for the
UAV experiencing Fault Mode 2 63 s after flight initiation.
Note the significant change in Euler angles and Euler rates
at time 80 s, which is a result of the aircraft drastically
changing heading to fly to the new priority waypoint gener-
ated by GIHM. Notice that the roll and yaw angles remain
unchanged after the fault mode is detected. This is because

Fig. 14. UAV trajectory for when Fault Mode 2 is activated at 63 s.
The aircraft starts from home at the origin and travels to the waypoints
in numerical order until the fault mode is detected. New landing waypoint
is the waypoint sent by GIHM and old landing waypoint is where the UAV
would have landed without GIHM.

Fig. 15. UAV altitude, throttle, and rudder command profiles for when
Fault Mode 2 is activated at 63 s. The numbered circles show the mis-
sion waypoints, with the one labeled ’new’ representing the new landing
waypoint generated by GIHM. The red circle represents when the fault
mode was detected. The aircraft starts on the ground, climbs to 150 m, then
descends when the fault mode is detected at 63 s.

the UAV cannot change its yaw or roll angles because of its
malfunctioning rudder and ailerons.

Computation time for the GIHM module ranges between
0.01 s and 0.04 s on a 2015 MacBook Air with 1.6 GHz
I5 processor, depending on which fault mode the UAV is
in. Fault modes that allow for yaw and roll require more
computation time because of the added amount of data points
in the FGIF. From the plots, when the fault mode was
detected, the UAV calculated the lowest casualty expectation
landing waypoint and was able to maneuver to that point.
The new landing points for all trajectory plots successfully
avoided the highly populated areas, while the aircraft would
have landed on the edge of the highly populated zones if the
UAV had not used the GIHM module.

VI. CONCLUSION

Understanding the footprint for a UAV experiencing flight
anomalies is an important first step in safer UAV control soft-
ware. However, existing ground footprint models for UAV
decision making either do not take into account population
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Fig. 16. UAV Euler angles and rates profiles for when Fault Mode 2 is
activated at 63 s. Angles are in radians. The aircraft has drastic changes in
pitch angle, but not roll or yaw angles when the fault mode is detected at
63 s because of the maneuvering limitations imposed by the fault mode.

density in the reachable footprint, or the population density
data accuracy needs to be improved. The addition of a precise
population dataset is an important addition to reachable
ground footprint models because the UAV now possesses
the ability to quantify its ground impact after determining
where it can land.

This work combined a reachable ground footprint model
with a precise spatial population dataset, all while integrating
this work with a flight simulation software that included a
6-DOF aircraft model, path planning, and autopilot control.
Our work successfully decreases the casualty expectation of
a small UAV by an average of 20.396 fatalities per 100,000
flight hours, or a 96% decrease in casualty expectation. The
development of the two fault modes allowed for a basis
of investigation into where a UAV might land given the
restrictions that specific fault modes cause and how the UAV
can reduce casualty expectation for different flight anomalies.

Future work includes looking at uncertainty of system
components, population density, and the environment, devel-
oping more engine out fault modes for other control surface
malfunctions, developing fault modes for accelerated aircraft
experiencing various control surface malfunctions, integrat-
ing a collision detection and avoidance module, addition of
topology data for determining if a UAV has a sufficiently
large landing site, and a more sophisticated decision making
engine that allows the UAV to execute various flight con-
trol instability mitigation maneuvers during flight anomalies
before diagnosing a fault mode.
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