
Received 10 November 2022, accepted 18 November 2022, date of publication 23 November 2022,
date of current version 30 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3224146

Distributed Task Allocation Algorithms for
Multi-Agent Systems With Very
Low Communication
AKSHAY BAPAT , BHARATH REDDY BORA , JEFFREY W. HERRMANN , SHAPOUR AZARM ,
HUAN XU , (Member, IEEE), AND MICHAEL W. OTTE , (Member, IEEE)
A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA

Corresponding author: Michael W. Otte (otte@umd.edu)

This work was supported in part by the Air Force Research Laboratory under Award FA8750-18-2-0114, and in part by the U.S. Office of
Naval Research under Award N00014-20-1-2712.

ABSTRACT In this paper we explore the problem of task allocation when communication is very low, e.g.,
when the probability of a successful message between agents is �0.01. Such situations may occur when
agents choose not to communicate for reasons of stealth or when agent-to-agent communication is actively
jammed by an adversary. In such cases, agentsmay need to divide tasks without knowing the locations of each
other. Given the assumption that agents know the total number of agents in the workspace, we investigate
solutions that ensure all tasks are eventually completed—even if some of the agents are destroyed.We present
two task allocation algorithms that assume communication may not happen, but that benefit whenever
communications are successful. (1) The Spatial Division Playbook Algorithm divides task among agents
based on an area decomposition. (2) The Traveling Salesman Playbook Algorithm considers mission travel
distance by leveraging Christofides’ 3/2 approximation algorithm. These algorithms have task completion
runtime complexity of O(m logm) and O(m3), respectively, where m refers to the total number of tasks.
We compare both algorithms to four state-of-the-art task allocation algorithms — ACBBA, DHBA, PIA
and GA— across multiple communication levels and multiple numbers of targets, and using three different
communication models. The new algorithms perform favorably, in terms of the time required to ensure all
targets are visited, in the special case when communication is very low.

INDEX TERMS Autonomous robots, distributed, low communication environment, motion planning, target
search, task allocation.

I. INTRODUCTION
Distributed task allocation involves autonomous agents divid-
ing a set of tasks among themselves. Task allocation within
autonomous multi-agent systems has been proposed for use
in a variety of applications, including: search and rescue [1],
agriculture [2], surveillance [3] and firefighting [4].

This paper studies decentralized task allocation algorithms
for the special case in which communication is very low;
when the probability of a successful message transmission
is�0.01. Scenarios with very low communicationmay occur
when agents choose not to communicate for reasons of stealth

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

(in which case we assume that task locations may be broad-
cast from a distant transmitter without jeopardizing agent
stealth), or when communication between agents is actively
jammed by an adversary (for example, after agents know
task locations but before tasks have been allocated). These
scenarios are depicted in Figure 1. In such scenarios agents
must be able to divide tasks without communication and
without knowledge of each other’s locations.

We present two new algorithms for distributed task alloca-
tion in multi-agent systems designed for use when communi-
cation is very low—or even, possibly, nonexistent. We call
our proposed algorithms ‘‘playbook’’ algorithms because
they are similar to a sports team’s playbook. A playbook
contains rules for each player, such that each player knows

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 124083

https://orcid.org/0000-0001-8476-5411
https://orcid.org/0000-0002-4758-9743
https://orcid.org/0000-0002-4081-1196
https://orcid.org/0000-0001-5248-6266
https://orcid.org/0000-0002-7238-8759
https://orcid.org/0000-0001-7432-0734
https://orcid.org/0000-0002-1899-2808


A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 1. Depiction of the Problem that we explore in this paper, task
allocation with very low communication (left). Two example scenarios to
which this problem is relevant (right) are task allocation to stealth agents
already in the field (right-top) and task allocation when communication is
jammed by an adversary (right-bottom).

FIGURE 2. Depiction of the spatial division playbook algorithm (SDPbA).
Note that in step 4 all agents have moved along their respective paths.

their own part of a coordinated team effort without the need
for communication at runtime. That said, in the algorithmswe
present, successful runtime communications tend to improve
solution quality whenever they occur.

The two playbook algorithms that we study are called:
(1) The Spatial Division Playbook Algorithm (SDPbA), and
(2) The Traveling Salesman Playbook Algorithm (TSPbA).

FIGURE 3. Depiction of the traveling salesman playbook
algorithm (TSPbA).

The algorithms are depicted in Figure 2 and 3, respectively.
Both algorithms involve a deterministic task allocation pro-
cess that generates the same task assignments when run in
independently and in parallel by each agent. The two algo-
rithms differ in the deterministic mechanism that is used to
allocate tasks to agents as a function of task locations and
total agent number.

SDPbA uses an area-based procedure to divide the
workspace into distinct regions, such that all regions con-
tain a similar numbers of tasks (see Figure 2). Regions are
allocated to agents based on agent ID number. In contrast,
TSPbA calculates a single path through all the task locations
using Christofides’ deterministic 3/2 approximation to the
Traveling Salesman Playbook Algorithm (TSP), and then
then allocates contiguous segments of the TSP approxima-
tion to agents based on agent ID number (see Figure 3).
TSPbA is computationally more expensive than SDPbA, but
provides better load-balancing by allocating pieces of near-
equal lengths to agents.

After completing their own tasks, all agents check that
all tasks have been completed (this is done in case other
agents have been destroyed or delayed). Any undone task
is performed by the discovering agent. In both algorithms
each agent i progresses through groups of tasks assigned to
agents with higher and higher IDs, i+ 1, . . . n, 1, . . . i− 1,
with a wrap around occurring at n ≡ 0. Here n is the total
number of agents. Successful communications, although very

124084 VOLUME 10, 2022



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

rare, are used to propagate knowledge of completed tasks.
Agents do not need to verify tasks that are known to have
been completed. Thus, successful communications tend to
decrease mission time.

A. BACKGROUND
Task allocation algorithm are often categorized as being cen-
tralized or decentralized. Centralized algorithms only require
communication to and from a central authority. While effi-
cient, this also introduces a single point of failure, since the
central authority has to communicate tasks to all of the agents.
Decentralized algorithms are not susceptible to single points
of failure because the computational and decision-making
power is distributed among all agents. However, decentral-
ized algorithms require all agents to think and act by them-
selves, which often requires duplication of computational
effort by multiple agents.

Previous work has investigated how multi-robot decentral-
ized task allocation algorithms that were originally designed
for perfect communication perform as communication qual-
ity degrades [5], [6]. These investigations have shown that
previously proposed algorithms performwell when agents are
able to communicate, but their task allocation becomes ineffi-
cient when communication quality degrades. In contrast, we
take the opposite approach. We present two new multi-agent
task algorithms that have been designed for the special case of
no communication, and then observe how their performance
changes as communication quality improves.

B. MOTIVATION
This paper is concernedwith studying distributive task alloca-
tion algorithms in scenarios in which communication is par-
ticularly limited. Examples of such communication limited
scenarios include:

• When signal jamming prevents communication.
• When the environment is so large that there is consider-
able loss in communication signal.

• When the mission requires the agents to operate silently,
e.g. when a message can give away the location of an
agent to an adversary.

• When hardware malfunction results in agents being
unable to send or receive messages.

SDPbA and TSPbA offer respective trade offs between
using a simple and computationally efficient approach and
using a more sophisticated but more expensive approach.
If there are m tasks and n agents, SDPbA has a runtime
complexity of O(m logm) for task allocation and O(m

3

n3
) for

path-planning within the allocated tasks. Thus, the overall
runtime complexity for SDPbA is O(m logm + m3

n3
). On the

other hand, the runtime complexity of TSPbA for task allo-
cation is O(m3) and chopping the segment into pieces takes
O(m). Thus, the overall runtime complexity for TSPbA is
O(m3). If the number of targets is small, TSPbA is only
slightly computationally more expensive than SDPbA, but
can allocate tasks efficiently. On the other hand, if there

are a large number of targets, TSPbA may generate a better
solution but is significantly more computationally expensive
than SDPbA.

C. CONTRIBUTIONS
Many real-world scenarios exist that may involve bad
communication—for example, jamming, distance, stealth, or
communication malfunctions. Having algorithms that can
handle these conditions is useful. The main contributions
of this paper include: (1) Two new playbook algorithms
designed for scenarios with very low communication
between agents, (2)mathematical analysis of the playbook
algorithms’ transient startup phase, and (3) experimental
simulations comparing the new algorithms with state-
of-the-art task allocation algorithms (ACBBA [7], [8],
DHBA [9], PIA [10] and GA [11]), using three com-
munication models and two metrics across a variety of
scenarios.

We compare the Playbook Algorithms with state-of-the-
art algorithms via simulations. In particular, we consider
task allocation scenarios that involve visiting stationary tar-
gets, and study how performance changes across a vari-
ety of communication quality levels and target numbers m,
while keeping number of agents n constant. Communication
is modeled in three different ways, using, respectively: the
Bernoulli model, the Gilbert-Elliot model, and the Rayleigh
Fading model. We focus on the cases when the instantaneous
probability (p) of a message being successfully delivered
from one agent to another satisfies p� 0.01. We define
two performance metrics for comparing algorithms: the Real
Mission Completion Time (R-MCT) and the Agent Mission
Completion Time (A-MCT). These are formally introduced
in Section III.
The playbook algorithms’ initial task allocation and visit

sequencing are deterministic. One consequence of this is that
they may start ‘‘slower’’ than other algorithms in terms of
the rate of visiting targets per unit time. The target visit
rate increases as time passes. We term this phenomenon the
‘‘startup cost’’ of the algorithms, and prove that the relative
startup cost of both algorithms asymptotically converges to
zero as the number of targets approaches infinity. We also
discuss the runtime complexity and message size complexity
of all six algorithms in the analysis section.

D. ORGANIZATION
The rest of the paper is organized as follows: Section II out-
lines existing related work. In Section III we present prelimi-
nary concepts and assumptions, and provide a formal problem
statement. Section IV contains details about the Playbook
Algorithm, and the other task allocation algorithms we use
for comparison. Section V contains an analysis of algorithmic
properties. Section VI describes the experimental setup used
and presents a detailed mathematical analysis of the results.
In Section VII we discus the implications of results obtained
from the simulations. Section VIII derives conclusions based

VOLUME 10, 2022 124085



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

on these results, and also discusses possible future directions
of work in this area.

II. RELATED WORK
A. RELATED WORK ON TASK ALLOCATION
Approaches for solving the multi-agent task allocation prob-
lem have appeared in several papers. A common approach
is to perform an auction in which each member of the team
submits a competing bid, and the task is awarded to the
agent with the best bid. The Consensus-Based Auction Algo-
rithm (CBAA) and the Consensus-Based BundlingAlgorithm
(CBBA) [12] are widely used decentralized algorithms based
on the auction approach. The Asynchronous Consensus-
Based Bundling Algorithm (ACBBA) [7], [8], Performance
Impact Algorithm (PIA) [10] and the Hybrid Information
and Plan Consensus algorithm (HIPC) [13] are improved
algorithms based on the CBBA.

Another approach to the task allocation problem involves
the use of deterministic or stochastic optimization techniques.
The Decentralized Hungarian Based Algorithm (DHBA) [9]
employs deterministic optimization using the Hungarian
method, while the ant-colony optimization algorithm [14]
uses stochastic optimization techniques. Patel et al. [15] pro-
pose an approach to task allocation based on a decentralized
Genetic Algorithm [11] and demonstrate instances of when
this approach works better than existing approaches.

Samiei et al. [16] propose a cluster-based Hungarian algo-
rithm. This approach is similar to the approach proposed in
this paper in that agents group tasks and solve the Hungar-
ian assignment problem corresponding to these groups of
tasks. One difference between our work and [16] is that our
playbook algorithms use a deterministic procedure to assign
groups of tasks to agents, while the cluster-based Hungarian
algorithm in [16] relies on communication between agents
for task assignment. In low communication scenarios, there
is a chance that multiple agents are assigned the same group
of tasks in [16], this cannot happen in SDPbA or TSPbA.
Note that although we use SDPbA and TSPbAin scenarios
requiring agents to verify tasks are completed by other agents,
if the method of [16] was used in an analogous way, then two
or more agents could potentially perform their tasks in the
exact same order.

Best et al. [17] propose a novel approach to multi-
agent planning using a variant of Monte-Carlo Tree Search
(MCTS). This approach employs the MCTS to search the
environment such that a global objective function is maxi-
mized subject to a constraint defined by the resource budget
available to the agents. In contrast, we seek to minimize the
cost (timemetrics) without imposing any resource constraints
on the agents.

B. RELATED WORK WITH IMPERFECT COMMUNICATION
The problem of imperfect communication in multi-agent
task allocation has previously been studied in a variety
of scenarios. Otte et al. [6] evaluates three distributed
auction-based algorithms in lossy networks and the effect of

imperfect communication on task allocation in cen-
tralized multi-agent systems with a single auctioneer.
Rantanen et al. [18] discuss the effect of a realistic com-
munication model on the performance of ACBBA using an
open-source network simulator. The results of [18] indicate
that even when the communication is near-perfect, the algo-
rithm becomes very inefficient due to redundant task assign-
ments. Alighanbari et al. [19] propose a different approach
to task allocation that introduces a second phase in which
agents communicate with each other, which improves the
algorithm performance in sparse networks. Sujit et al. [20]
propose a team theory to overcome inefficient perfor-
mance of greedy algorithms when sensor range is limited.
Radak et al. [21] compare the performance of two distributed
control algorithms subject to three communication models,
namely Bernoulli, Slotted Aloha and IEEE 802.11p. The
main difference between our work and these previous efforts
is our focus on the very low communication case. Other
differences include our use of decentralized algorithms, the
communication models used, and the performance metrics
considered.

C. RELATIONSHIP TO AUTHORS’ PREVIOUS WORK
Nayak et al. [5] provide a detailed comparison of five
decentralized task allocation algorithms for a wide range
of communication quality simulated using three different
communication models, namely Bernoulli, Gilbert-Elliot and
Rayleigh Fading models. The current paper builds on the
work done by Nayak et al. by focusing on cases of very
low quality of communication using the three aforementioned
communication models. In other words, while [5] considers
p for 0.01 < p ≤ 1 the current paper considers 0 ≤ p �
0.01–and introduces two new algorithms designed for this
particular case of very low communication.

Herrmann [22] discusses the use of experimental data
about collaborative algorithms to develop a metareasoning
policy that changes the algorithm that an agent is run-
ning based on the expected performance in that scenario.
Carrillo et al. [23] explores using a formal logic based pol-
icy for metareasoning about which task allocation algorithm
should be used in environments in which communication
quality evolves over time. The current paper does not consider
metareasoning, but provides additional tools that can poten-
tially be used by a metareasoning task allocation system (for
example, when communication degrades to such an extent
that agents are rarely able to communicate).

The work in the current paper differs from our pre-
vious work [5], [22], [23] in a number of ways. Most
importantly, the current paper focuses on new algorithms
for the special case where communication is very low—
p� 0.01 and potentially nonexistent—and does not consider
metareasoning.

A preliminary version of this paper appeared in the first
Author’s Master’s Thesis [24]. The current paper extends the
Master’s Thesis with a more detailed presentation of the play-
book algorithms, additional experimental trials in simulation,

124086 VOLUME 10, 2022



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

statistical analysis of the algorithms’ performance, new fig-
ures that depict the algorithms’ behavior and performance,
and a new discussion of results based on the new experimental
trials.

III. PRELIMINARIES
In this section we define our nomenclature, discuss the met-
rics we use to evaluate algorithmic performance, and discuss
our major assumptions. We also provide a formal problem
definition for the task allocation problem that we study and
discuss the communication models.

A. NOMENCLATURE
Consider a set of autonomous agents, denoted byA.A consists
of n distinct agents A = {a1, . . . , an} and a set of tasks,
denoted by T , consists of m distinct tasks T = {t1, . . . , tm}.
The set of tasks assigned to agent ai is denoted by Si, where
Si is a finite set of tasks Si ⊆ T . In this paper, we consider
the collaborative visit scenario where the agents are supposed
to visit the set of stationary targets (T ) spread across a map
of fixed dimensions. A target is considered to be visited if an
agent comes within a threshold distance δ of the target.

B. PERFORMANCE METRICS
We evaluate the algorithms using two performance metrics:

• R-MCT: Real Mission Completion Time, defined as the
time when all tasks have been performed at least once.
This is an absolutemeasure of the time taken to complete
the mission from an observer’s point of view.

• A-MCT: Agent Mission Completion Time, defined as
the timewhen at least one agent knows that all tasks have
been completed.

The main difference between R-MCT and A-MCT is that
R-MCT measures the time at which all tasks have been
completed, while A-MCT measures the time at which at
least one agent knows that all tasks have been completed.
The two metrics are different in scenarios where agents have
imperfect runtime knowledge of task completion. R-MCT is
more relevant to scenarios where the time of task completion
is more important than the delivery of this knowledge to, e.g.
a human commander. On the other hand, A-MCT is more
relevant to scenarios when knowledge of mission completion,
e.g., by a human, is an important consideration.

C. MAJOR ASSUMPTIONS
We assume that tasks involve visiting targets located in the
environment. Each agent knows its own unique ID number
and the locations of all targets. We assume that agents do
not know the locations of other agents. We assume agents
travel at a constant speed, and that each agent has enough
fuel to complete all tasks. For SDPbA we also assume that
agents have a deterministic way to calculate the center of the
workspace (such as at the centroid of task locations). The
multi-agent system is ‘‘decentralized’’, implying that there is
no central computing element that assists the agents and so

agents are assumed to be capable of performing independent
computation.

Agent knowledge of task locations is arguably our most
restrictive assumption. In practice, agents’ knowledge of the
task locations may happen in a number of ways. For example,
agents may receive a ‘‘one-way’’ message, e.g., from a distant
transmitter or satellite. Agents may not be able to respond
to this message due to requirements of stealth or because
the communication channel is expected to be jammed after
a single message is sent. Alternatively, agents may each be
in the environment performing separate missions when an
unanticipated event occurs that both prevents communication
and necessitates the completion of tasks. For example, visit-
ing the last known locations of human personnel for safety
verification, rescue, or supply delivery after a disaster event.

We assume that agent-to-agent communication is very low.
There are many reasons why the communication level may be
very low. For example, the existence of fluctuating environ-
mental factors such as jamming or naturally occurring forms
of electromagnetic interference (solar flares, etc.). Alterna-
tively, if stealth is the primary factor for very low communi-
cation then communication may be very low for at least two
different reasons. Agents may choose to communicate very
infrequently and in a stochastic manner to minimize infor-
mation observable by an adversary. Alternatively, if agents
are equipped with a means of determining when it is ‘‘safe’’
to communicate, then the set of circumstances that permit
‘‘safe’’ communication may only occur infrequently and/or
at random.

D. PROBLEM DEFINITIONS
We now formally define the general multi-agent task alloca-
tion problem, as well as the specific target visit problem that
we study.

Problem 1, Multi-Agent Task Allocation:
Given a set of agents A = {a1, . . . , an} and a set of tasks

T = {t1, . . . , tm}, find set of tasks Si for agent ai such that
∪
n
i=1Si = T .
Problem 2, Assured Multi-Agent Target Visit With Very

Limited On-The-Fly Communication:
Given an environment with very limited communication,

a set of agents, given by A = {a1, . . . , an} known a priori
and a set of targets T = {t1, . . . , tm} known to all agents but
determined at runtime after agents are already in the field,
determine agent movement in order to minimize the mission
completion times (R-MCT and A-MCT).

For the purposes of improving the state of the art, a satis-
factory solution to this problem would yield a R-MCT and
A-MCT that is less than the R-MCT and A-MCT of solutions
generated by existing task allocation algorithms (ACBBA,
DHBA, PIA and GA).

E. COMMUNICATION MODELS
Communication between agents can be modeled in a num-
ber of ways. In this paper, we compare the results obtained
using three different communication models. These include:

VOLUME 10, 2022 124087



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 4. Map slicing as done by the spatial division playbook
algorithm. Regions are calculated using a deterministic method such that
each region contain either bn/mc or dn/me tasks.

the Bernoulli Mode (a stochastic model), the Gilbert-Elliot
Model (a Markov model), and the Rayleigh Fading Model
(a limiting case of communication reflections that accounts
for distance fading and self interference). The details of
all three communication models are presented in detail in
Appendix.

All three of the aforementioned communication models
have previously been used to study task allocation in sce-
narios with imperfect communication, e.g., by Otte et al. [6]
and Nayak et al. [5]. Each model has different strengths and
weaknesses, and so evaluating algorithmic performance using
multiple models provides a more comprehensive understand-
ing of an algorithms performance, e.g., with respect to the
performance of other algorithms in a low communication
setting.

IV. ALGORITHMS
In this section, we provide a detailed description of the two
proposed Playbook algorithms as well as a discussion of
caveats related to using the algorithms. The details of existing
algorithms—ACBBA, PIA, DHBA, and GA—to which we
compare our work appear in Appendix.

A. SPATIAL DIVISION PLAYBOOK ALGORITHM (SDPbA)
Using the Spatial Division Playbook Algorithm, agents dis-
tribute tasks amongst themselves such that each agent gets a
set Si of tasks and satisfies∩ni=1Si = φ. These sets of tasks are
mutually exclusive and collectively exhaustive. As shown in
Figure 4, for a scenario with 25 targets (blue) and five agents,
each agent running SDPbA divides the map into five regions
(red lines mark the region boundaries). Each region contains
five targets that are assigned to the agent corresponding to
that region.

Each agent running SDPbA (Algorithm 1) takes the target
set (T ), number of agents (na), and agent ID (ID) as inputs and
slices the map into a number of regions equal to the number
of agents (na) such that each region has an equal number
of targets, denoted by TPR (line 5). A region is a slice of
the map defined by its boundaries, which are straight lines

Algorithm 1 Spatial Division Playbook Algorithm
1: function SDPbA(T , na, ID)
2: region, path←None
3: i←0
4: targsLeft←len(T )
5: TPR←dtargsLeft/nae
6: boundary←− π/2
7: targList←sorted(T)
8: while targsLeft > 0 do
9: region[i].insert(nextTargs(TPR,T ))

10: boundary←lastAngle(region[i])
11: targsLeft←targsLeft − 1
12: i←i+ 1
13: na←na − 1
14: TPR←dtargsLeft/nae
15: end while
16: path←TSPPath(region[ID])
17: appendRemainingTasks(path, region, ID)
18: while missionNotComplete do
19: sendCompletedTasksList()
20: removeCompletedTasks(path)
21: end while
22: end function

from the center of the map to the edges. The algorithm starts
by sorting targets based on their polar coordinate θ in the
function sorted() (line 7 of Algorithm 1). In case of two
or more targets having the same value of θ , targets are sorted
based on their polar coordinate r , which is the distance from
the origin.

The number of targets per region (TPR) is calculated as the
ceiling of the ratio of remaining targets (targets not assigned
to any region yet) to the number of agents. The initial value
of TPR is the length of the target list T , given by the function
call len(T ). The function nextTargs() sorts the targets
according to their angles (polar coordinate θ ) and returns
TPR number of targets that lie in the slice corresponding to
the current region. boundary is defined (line 6) as the angle
at which the current region begins. Thus, for region 0, the
boundary is −π/2. This value of boundary is updated every
time a new region is being considered (line 10).
TPR is re-calculated for each region that is considered

(line 14), using updated values of targets left and agents left
for assignment (line 11, 13). The ceiling function ensures that
if the number of agents does not perfectly divide the number
of targets, agents get assigned unequal numbers of targets. For
example, if there are 9 targets and 2 agents, the targets must
be assigned unequally. Using the ceiling function, the value
of TPR for the first agent will be 5 and 4 for the second agent.

The region being considered is changed when TPR targets
are assigned to that region (line 12). Using this approach,
each agent computes the exact same region list. The algorithm
returns an approximate Traveling Salesman Problem (TSP)
solution corresponding to the region that has the same ID as

124088 VOLUME 10, 2022



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 5. Division of TSP solution as done by the traveling salesman
playbook algorithm. Green segments denote pieces of the TSP solution
that are assigned to agents.

the agent (line 16), in the function TSPPath(). This approxi-
mate solution is computed using Christofides’ algorithm [25],
which guarantees a solution that is noworse than 1.5 times the
optimal TSP solution in O(m3) time for visiting m cities. Fol-
lowing this, the TSP-approximate solutions for the remaining
regions are appended to the path (line 17) to ensure that
agents move on to complete other tasks when done with their
assigned regions. After assigning pieces among themselves,
the agents periodically broadcast their completed tasks lists
to other agents (line 19). If they receive such a message
from other agents, they remove the tasks that the transmitting
agents have completed from their own task list (line 20).
These actions are repeated till the mission is complete, which
is checked by the flag missionNotComplete (line 18).
Since task allocation in SDPbA involves sorting the m

tasks, its runtime complexity is O(m logm). After tasks are
allocated to agents, the algorithm plans for the sequence with
which the tasks should be completed.While a variety ofmeth-
ods can potentially be used to calculate each single agent’s
tour of its own tasks, we use Christofides’ approximation of
the TSP solution. This operation has a runtime complexity of
O(m

3

n3
). Hence, the overall runtime complexity for SDPbA is

O(m logm+ m3

n3
)

B. TRAVELING SALESMAN PLAYBOOK
ALGORITHM (TSPbA)
The Traveling Salesman Playbook Algorithm programs
the agents to compute identical approximate solutions to the
Traveling Salesman Problem (TSP) where each target in
the map is a node of the TSP. Each of the n agents com-
putes an approximately optimal path P through all targets
using Christofides’ algorithm and then divides that path into
n pieces (p1, . . . , pn), each piece having length li, such that
each piece pi satisfies pi ⊆ P. The pieces assigned to
all agents are sequences of targets and these sequences are
mutually exclusive and collectively exhaustive. The orders of
tasks in pieces are determined based on their sequential order
in the global TSP solution. To equalize the load distribution

among the agents, the algorithm divides the path into pieces
that minimizes max(L), where L is the set {l1, . . . , ln}.

An example is illustrated in Figure 5, where the algo-
rithm computes a TSP-approximate path through 25 targets.
Assuming five agents, this path is divided into five pieces
(green). Black dashed lines indicate edges of the path that
are part of the TSP solution but are not assigned to any
agent, since the vertices that define the black edge are
both assigned to one agent each. The number of targets per
piece of TSP path is optimized such that each agent gets a
near-equal amount of load in terms of length of the piece
assigned to it.

Algorithm 2 details the working of TSPbA. The algorithm
accepts the target set T , number of agents na and the agent ID,
denoted by ID, and iteration number iter (described below).
The algorithm starts by solving the TSP using Christofides’
algorithm (line 3), which returns the path and edges. Edges
is a list containing lengths of all the edges of the TSP path.
Partitions is list of indices that separate two pieces of the
path, to be assigned to two different agents. In line 4, the
function getNaiveParts() generates a naïve list of par-
titions that divide the path into pieces such that each piece
has approximately the same number of targets. This naïve
partitions list is iteratively changed (lines 6 and 7) such that
the maximum of the set L is minimized. This is done by
the function minMax() by looping through each partition
index and making increments and decrements to it in order to
minimize the maximum length in L. This process is iterated
iter times. In each iteration, the algorithm considers each
piece in order and adds or removes edges from that piece
till the maximum element of L is minimized.
The end product of this loop is a partitions list that divides

the path among agents in themost equal manner. The function
dividePath() (line 11) is responsible for assigning the
piece corresponding to the agent ID to the agent. The rest
of the path is also appended to pieces by this function to
ensure that after completing its own part, each agent moves
on to complete the rest of the path, in the case when other
agents are unable to complete their assigned tasks. After
assigning pieces among themselves, the agents periodically
broadcast their completed tasks lists to other agents (line 13).
If they receive such amessage from other agents, they remove
the tasks that the transmitting agents have completed from
their own task list (line 14). These actions are repeated
till the mission is complete, which is checked by the flag
missionNotComplete (line 12).
Task allocation in TSPbA uses Christofides’ algorithm,

resulting in a runtime complexity of O(m3). Since tasks are
allocated to agents in the same sequence as the global TSP
solution, agents do not require further path planning as they
can follow the same sequence. Hence, the total runtime com-
plexity of TSPbA is O(m3).

C. CAVEATS OF THE PLAYBOOK APPROACH
The general idea of the playbook approach used in the two
proposed algorithms is to make all the agents come up with

VOLUME 10, 2022 124089



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

Algorithm 2 Traveling Salesman Playbook Algorithm
1: function TSPbA(T , na, ID, iter)
2: pieces, partitions, edges, path←None
3: path, edges←TSPPath(T )
4: partitions←getNaiveParts(edges, na)
5: while iter do
6: for i in partitions do
7: partitions←minMax(partitions, i)
8: end for
9: iter = iter − 1

10: end while
11: pieces←dividePath(path, partitions, ID)
12: while missionNotComplete do
13: sendCompletedTasksList()
14: removeCompletedTasks(path)
15: end while
16: end function

identical solutions and divide the solution between all agents
such that there is no overlap. To keep the solutions identical,
the starting positions of agents do not play a part in either
coming up with a solution or in dividing the solution into
parts. As the starting location of agents is unknown a priori
(i.e., agents may happen to be anywhere when the search
mission starts), an agent has to travel from its starting location
to the first target assigned to it. We term this travel as the ‘first
haul’ and the distance traveled in the first haul as the ‘startup
cost’ of that agent, since no targets are visited till this distance
is traversed by the agent. As a result of this first haul, the
R-MCT is affected with a magnitude that is proportional
to the startup cost of agents, which may be small or large,
depending on the starting locations of agents.

V. ANALYSIS
The startup cost of agents results in a variability in the perfor-
mance of the playbook algorithms, depending on the starting
locations of agents and the division of targets that the agents
come up with. On observing how the agents behave when
running the playbook algorithms, we conjecture that as the
number of targets increases, the startup cost gets smaller in
comparison to the time required to visit targets assigned to
that agent. In the Section V-A we prove this conjecture.

In Section V-B we analysis of the bandwidth requirements
of the playbook algorithms and the other algorithms used in
our experiments.

A. ANALYSIS OF STARTUP COST OF
PLAYBOOK ALGORITHMS
We start by proving the aforementioned conjecture for
TSPbA, before moving on to prove a similar result for
SDPbA.
Definition 1 (Event Space): The event space for n agents

and m targets (denoted by Xn,m) is the space containing all
possible starting locations of agents and targets within the
given workspace, denoted byW.

We consider the full event space (as described above) as
the Cartesian product of the event spaces for the target and
the event space for the agents, denoted respectively as Xm
and Xn, such that:

Xn = W1 × . . .×Wn =Wn

Xm = W1 × . . .×Wm =Wm

where, Wi = W for all i, since all events share the same
workspace. Thus, Xn,m= Xn × Xm.
Definition 2 (Event): An event for n agents and m tar-

gets (denoted by xn,m) is an element of the event space
Xn,m, which represents a single instance of n randomly
located agents and m randomly located targets in the given
workspace.

Note: An event xn,m is a multi-variate random variable.
Also note that, similar to the event space, an event satisfies

xn,m = xn ⊕ xm.
Definition 3 (TSP Distance Function): The TSP distance

function, F : Xn,m→ R, is defined as the distance (cost) of
the optimal TSP solution to the m-city problem defined by
event xn,m.

Beardwood et al. [26] state that the length of the optimal
TSP solution as the number of cities in the TSP becomes very
large is asymptotically proportional to the square root of the
number of cities. This can be formally stated as:
Proposition 1: Assuming that a target sequence of length

m is drawn from a uniform distribution such that all targets
are bounded by a closed region of area v, then for a constant
c ∈ (0,∞), the length of the optimal solution (L) to the TSP
corresponding to the target sequence almost surely satisfies:
limm→∞

L
√
mv = c.

Lemma 1: In a square map of dimensions M × M , the
length of the optimal solution to the Traveling salesman prob-
lem, L, satisfies: limm→∞

L
M
√
m = c, for some c ∈ (0,∞).

Proof: We divide this proof in two parts: (1) the optimal
solution to the TSP satisfies limm→∞

L
M
√
m = c, and (2)

such a scenario where the solution to the TSP satisfies the
condition given in (1) exists almost surely.

Part 1: As a consequence of proposition 1, there exists a
finite and positive c such that: limm→∞

L
M
√
m = c.

Part 2: The event space for a 2-dimensional workspace
with n agents and m targets is of the dimensions
2(n + m). Event xn,m∈ Xn,m can be represented as
[t1, . . . , tm, a1, . . . , an], where ai is the ith agent location, and
tj is the jth target location; note that all ais and tjs are random
variables in W, where W is the 2-dimensional workspace.
Since targets and agents can exist anywhere in the workspace,
the probability distribution for targets and agents is non-zero
at every point in the workspace.

Given this and the results of [26], it follows that for some
finite, positive c, almost surely: limm→∞

F(xn,m)
√
mv = c.

In the scenarios under consideration, the map is a square
with areaM2. Hence, limm→∞

F(xn,m)
M
√
m = c. �

Lemma 2: The maximum possible startup cost, LSmax is
given by LSmax = M

√
2

124090 VOLUME 10, 2022



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

Proof: The startup cost (LS ) for an agent is the dis-
tance from its starting location to the first target assigned
to the agent. The worst-case startup cost corresponds to
the maximum possible distance between any two points on
the map, which is the diagonal length of the square map.
Thus, the maximum possible startup cost, LSmax is given by:
LSmax = M

√
2 �

Theorem 1: The fraction of time spent by a TSPbA agent
(f ) in the first haul satisfies limm→∞ f = 0.
Proof: Since the agents move at a constant speed, the time

taken (R-MCTorA-MCT) is proportional to the total distance
traveled (Ltotal). The total distance is the sum of the startup
cost and the cost of the solution to the TSP. Thus, Ltotal =
L+LS ≤ L+LSmax . Hence, Ltotal ≤ L+M

√
2. The fraction

of time spent in the first haul (f ) is given by f = LS
Ltotal

. From

Lemma 2 we know that as the number of targets (m) becomes
very large, the denominator Ltotal becomes asymptotically
proportional to M

√
m, while the numerator LS has an upper

bound LSmax . Thus, limm→∞ f = 0. �
This result is proven for TSPbA, but can be extended to

SDPbA as well.
Corollary 1: The fraction of time spent by a SDPbA agent

in the first haul (f ) satisfies f → 0 as m→∞.
Proof: In SDPbA, agents do not compute a mutually con-

sistent TSP solution, but divide the map into regions and then
compute TSP solutions independently. In this case as well,
the targets assigned to an agent are bounded by a region
that has an area λM2, where λ ∈ (0, 1]. Lemma 1 implies
that limm→∞

L
M
√
m =

√
λc for some c ∈ [0,∞), and the

worst-case startup cost given by lemma 2 still holds true,
making LSmax = M

√
2. Thus, it follows from theorem 1 that

limm→∞ f = 0. �

B. BANDWIDTH REQUIREMENTS
Different task allocation algorithms have different bandwidth
requirements in terms of message size and the frequency
of sending messages to work effectively. In this subsection
we discuss these requirements for all the algorithms being
compared in this study.

InACBBA, each of the n agents creates a bundle containing
B targets. The agent creates a winning bids list, winning
agents list and a timestamp record list in a single iteration
and sends these lists as a message to other agents. The agent
also receives messages from other agents and updates its lists
based on the messages received. This process is iterated I
(iteration count) times. These I iterations are carried out in
one time step and the number of time steps depends on the
total duration of the simulation, which in turn depends on
multiple factors such as locations of targets, communication
level and starting locations of agents. Assuming perfect com-
munication, the total number of computations involved in one
time step for one agent is O(mnI +mB2I ). I and B are values
that are chosen by the user but are constant throughout all the
experiments. Hence, for a given set of (B, I ), the complexity
for a single agent is O(mn). The agents send messages that

TABLE 1. Bandwidth requirements for algorithms.

contain three lists, the winning bids list, winning agents list
and the timestamp record list, which are of lengthsm,m and n
respectively. Hence, the message size is of the orderO(m+n).

PIA works similar to ACBBA and hence it also has O(mn)
complexity for a single agent, and a message size of order
O(m+ n).
In DHBA, each agent maintains a cost matrix (m× n) and

exchanges this matrix with other agents to achieve consensus.
Hence, a single agent in a single time step running DHBA has
complexity O(mn). Since this matrix is sent as a message as
well, the message size is also of the order O(mn).
In each time step of GA, an agent generates a population

of solutions, which is an O(m) operation. It then selects the
best solution and sends it, and in turn receives solutions
from the other agents, then repopulates, and then mutates
the solutions. The time complexity of the overall operation
is hence O(m + n). Since the messages sent are individual
solutions, the message size is O(m).

Agents running SDPbA or TSPbA only communicate com-
pleted tasks with each other. The computation of initial paths
to visit targets happens at the beginning of the mission.
During the mission, agents may (although, only very rarely)
send out task completion messages to each other. When
agents receive messages from other agents that indicate the
completion of specific tasks, the receiving agent removes the
completed tasks from their own path and then recomputes
the tour of paths (in group order). In TSPbAthis is done by
shortcutting the completed tasks, and in SDPbAthis can be
done by recomputing tours of modified regions. The compu-
tational complexity as the agents are moving isO(mn) and the
message size is O(m).

All these observations are shown in Table 1. Note that the
computational complexity referred to in this case is not the
overall complexity of the algorithms, but only the complexity
of the computations required when sending messages to other
agents. This complexity dictates the frequency with which
agents send and receive messages.

VI. EXPERIMENTS
This section outlines the simulation framework used to
run experiments and the rationale behind the design of
experiments.

A. SIMULATION FRAMEWORK
Experiments were carried out using a simulator developed
in ROS [27], [28] with Python and C++ as programming

VOLUME 10, 2022 124091



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

languages in a Linux environment. The simulation framework
consists of two module types: the agent module and the
central environment simulator module.

Each agent module is an independent processing unit in
the CPU and simulates a unique autonomous agent that runs
the task allocation algorithm. We evaluate how performance
is affected by different levels of communication quality.
We perform three different sets of trials, each set using a
different communication model: the Bernoulli model, the
Gilbert-Elliot model, or the Rayleigh fading model. Agents
exchange messages with each other based on the particular
communication model used in each set of trials.

The comparison of performance trends across different
communication models provides insight into how the way
that communication is modeled affects the algorithms’ rela-
tive performance. We believe that performance trends that are
observed in all three models are more likely to generalize to
other communication models outside the scope of our current
work, e.g., as compared to trends that are only observed in one
or two of the communication models we explore.

The decisions made by agents, total number of messages
sent and received by the agents, time taken and distance
traveled to visit targets are all recorded in log files when
running the simulation.

B. DESIGN OF EXPERIMENTS
An experiment instance is defined by the number of targets,
the target locations, the agent starting locations, target cluster
locations and a communication level. In this paper we use
a constant value of five agents, and other parameters are
generated within constraints as given in Table 2. Since this
set of experiments is aimed at testing the performance of
task allocation algorithms in conditions with ‘‘very low’’
communication availability, the scenarios are generated for
five levels of very low communication as shown in Tables
3 and 4. Level C0 corresponds to the least communication
availability and then communication availability increases
with each level C1, C2, C3, and C4, respectively.

The new methods we evaluate are designed for the case
of no communication, while existing methods have been
designed for the case of perfect communication. Therefore,
it seems reasonable to assume that as communication quality
increases, existing methods will perform better and better—
and are likely to outperform the playbook algorithm at suffi-
ciently high levels of communication quality.

For each communicationmodel, the lowest communication
level (C0) corresponds to no communication, while the high-
est communication level C4 is chosen such that most of the
comparison algorithms outperform at least one of the play-
book algorithms (based on a preliminary exploration of the
experiment space). C1, C2, and C3 are then chosen to provide
increasing communication quality between C0 and C4. Thus,
for each set of experiments (i.e., per communication model),
the range of communication qualities has been selected to
highlight the region in which the relative performance of the
different algorithms is shifting.

TABLE 2. Parameters for design of experiments.

When using the Gilbert Elliot model, algorithms exhibit a
variation in performance across a wider range of transition
probabilities. Hence, as an exception, this model has six
communication levels. Of these six levels, C0 corresponds to
zero communication, and hence is identical to level C0 of the
Bernoulli model. Thus, results with communication level C0
for the Gilbert-Elliot model have not been separately included
in this study. Also, as a consequence, the final communication
level is denoted as C5 for the Gilbert-Elliot model.

TABLE 3. Definition of communication levels: bernoulli model and
rayleigh fading model.

TABLE 4. Definition of communication levels: gilbert-elliot model. *C0 is
not included in the results due to similarity with C0 of bernoulli model.

The map for the simulation is of dimensionsM×M where
M is 100 units and the origin is defined to be the bottom left
corner of the map. For the purpose of generating scenarios, it
is assumed that targets exist in clusters. The targets are mod-
eled in clusters because this represents real-world scenarios
in which targets need not be concentrated in a single region.
A target cluster is defined as a circular region of radius given
by cluster radius, centered at the cluster center. A number
of target clusters is chosen, followed by the cluster center
locations and the cluster radii, all chosen randomly with
the constraints provided in Table 2. Using these parameters,
targets are then placed within the clusters based on a uni-
form distribution. Figure 6 illustrates an instance of random

124092 VOLUME 10, 2022



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 6. Illustration of random target generation in clusters.

scenario generation, where 80 targets are generated in
3 clusters of radii 10 units each.

Lastly, the agents are placed at random locations on the
map using a uniform distribution. A target is said to be
‘‘visited’’ if an agent moves within a threshold distance (δ)
of 0.25 units of the target.

For a single task allocation algorithm, there are 90 possible
combinations of communication model (3 types), communi-
cation level (5 values) and number of targets (6 values). For
each combination, 40 random scenarios were generated by
varying the number of target clusters, radius of clusters and
agent and target locations, making a total of 3,600 scenarios
for each algorithm. Since six task allocation algorithms were
compared, a total of 21,600 experiments were conducted for
this analysis. For each of these experiments, we recorded
the performance of the task allocation algorithms in terms
of R-MCT and A-MCT. Depending on the target locations,
communication model and communication level, agents may
come to know of the mission completion (the event that
defines A-MCT) very late, thus delaying experiments and
increasing the value of A-MCT by a large amount. Hence,
we set a timeout of 100 seconds, so that any experiment
running longer than 100 seconds was killed and the A-MCT
was recorded as 100 seconds.

C. EXPERIMENTAL RESULTS
Weperformed a number of experiments to test our algorithms,
and evaluate performance using the metrics R-MCT and
A-MCT. A single data point represents the mean metric
(R-MCT or A-MCT, in seconds) for an algorithm for
40 distinct experiments corresponding to a single combina-
tion of the parameters shown in Table 2. Standard deviation
over the 40 experiments is shown using error bars. The plots
show how the mean performance of an algorithm varies as
the number of targets (represented as the x-axis) and the
Communication Level (varies across plots) are varied.

A high-level summary of experimental results appears in
Figures 7 and 8, which depict which algorithms had the best
mean performance in different scenarios. Figure 7 summa-
rized performance with respect to the R-MTC metric, while

Figure 8 summarizes results with respect to the A-MTC
metric. The new methods we propose have relatively good
performance with respect to the R-MTC metric when there
are many targets (e.g., over 30) and communication is very
poor.

Figures 9-10 present an in-depth summary of mean, stan-
dard deviation, and statistical significance values with respect
to the R-MTC metric. Likewise, Figures 12-13 present an
in-depth summary of mean, standard deviation, and statistical
significance values with respect to the A-MTC metric. The
playbook algorithms have relatively small standard devia-
tions, in general, compared to the other methods.

Considering the R-MTC metric, the difference in perfor-
mance between the playbook algorithms and the other meth-
ods become more statistically significant in two cases. The
first case is when communication is ‘‘very poor’’ and there is
a large number of targets—when the playbook algorithms
tend to perform relatively well. The second case is when
communication is only ‘‘poor’’ (and not ‘‘very poor’’) and
there is a small numbers of targets—when the playbook
algorithms tend to perform relatively poorly.

For the A-MCT performance metric our experiments show
that best performing algorithm appears to be related to the
communication model that is used. This is an unexpected and
interesting result in its own right. That said, we find that the
playbook algorithm does not often perform the best the with
respect to the A-MCT performance metric.

VII. DISCUSSION
In this section we discuss in more depth the results of our
experiments, including: the overall performance of the play-
book algorithms (Section VII-A), the effect of the number of
targets (Section VII-B), the effect of the communication level
and communication model (Section VII-C), and the standard
deviation of the playbook algorithms (Section VII-D).

A. OVERALL PERFORMANCE OF THE
PLAYBOOK ALGORITHMS
In general, the proposed playbook algorithms tend to perform
well with respect to the R-MTC performance when metric
when communication is very poor and there are more than
30 targets. The playbook algorithms do not perform as well
when communication is not very poor, when there are fewer
than 30 targets, or when considering A-MTC metric. In gen-
eral, the TSPbA playbook variant tended to outperform the
SDPbA playbook variant.

Our experiments indicate that the playbook algorithmsmay
be useful in scenarios with many targets, when communica-
tion is very poor (or non existent) communication.

On the other hand, previously existing algorithms appear to
be more useful in scenarios when the communication is not
very poor, when target numbers are small (less than 30), or
when we required that at least one agent can quickly discern
that the mission has been completed.

The experiments presented in Section VI rely on commu-
nication models that account for communication variability

VOLUME 10, 2022 124093



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 7. Summary of algorithm comparison for six different algorithms in different scenarios with respect to the
R-MTC metric. 40 trials are run for each combination of target number and communication quality level, for three
different communication models (sub-figures left to right). Five agents are used in all experiments. Each grid’s color
indicates which algorithm had the best mean performance for a particular combination of target number,
communication quality level, and communication model. See Tables 3 and 4 for details about how communication
levels map to communication model parameters. See Figures 9-10 for more in-depth plots of mean, standard
deviation, and statistical significance values. Real Mission Completion Time (R-MTC) is the time when all targets have
been visited at least once. The new methods we propose tend to perform relatively well with respect to R-MTC when
communication is very poor and there are large numbers of targets.

FIGURE 8. Summary of algorithm comparison for six different algorithms in different scenarios with respect to the
R-MTC metric. 40 trials are run for each combination of target number and communication quality level, for three
different communication models (sub-figures left to right). Five agents are used in all experiments. Each grid’s color
indicates which algorithm had the best mean performance for a particular combination of target number,
communication quality level, and communication model. See Tables 3 and 4 for details about how communication
levels map to communication model parameters. See Figures 12-13 for more in-depth plots of mean, standard
deviation, and statistical significance values. Agent Mission Completion Time (A-MCT) is the first time when at least
one agent becomes knowledgeable of the fact that all targets have been visited at least once. In contrast to results for
R-MTC, the methods we propose do not appear to provide a relative advantage with respect to the A-MCT metric.
Moreover, the communication model that is used appears to have an effect on which algorithm performs the best
with respect to A-MCT.

based on randomness (Bernoulii and Gilbert-Elliot models)
and/or motivated by wireless signal interference caused by
reflections off of objects in the environment (Rayleigh Fad-
ing model). Considering systematic shifts in communication
quality over time could be an interesting direction for future
study (for example, decreasing average communication qual-
ity as a function of time). However, this is beyond the scope
of our current work.

B. EFFECT OF NUMBER OF TARGETS
Wenote from our observations that for a fixed communication
level, as the number of targets increases from 10 to 60,
the performance of SDPbA and TSPbA improves relative
to ACBBA, DHBA, PIA and GA. We hypothesize that this
behavior is the result of the startup cost (as described in the
Analysis section). The first haul of agents is depicted by

a dotted black line in Figure 11. This behavior is observed
particularly when the number of targets is small, as the time
required for an agent running SDPbA or TSPbA to complete
the first haul is often much larger than the time required to
visit all targets in its region. In such cases, the other four
algorithms perform better than either of the playbook algo-
rithms. As a result of theorem 1 and corollary 1, as the number
of targets increases, SDPbA and TSPbA become favorable
algorithms in comparison to the four existing task allocation
algorithms.

C. EFFECT OF COMMUNICATION LEVEL AND
COMMUNICATION MODEL
From the results, we observe the range of communication
levels and number of targets in which the playbook algo-
rithms perform better than existing task allocation algorithms.

124094 VOLUME 10, 2022



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 9. Mean (color circles) and standard deviation (color error bars) of performance with respect to the R-MTC metric. Six
algorithms are compared in different scenarios. 40 trials are run for each combination of target number (x-axes) and
communication quality level (sub-plots) for three different communication models (sub-figures left to right). Five agents are used
in all experiments.

The playbook algorithms perform worse than other task allo-
cation algorithms as the communication level increases.

Thus, one downside of the playbook algorithms vs. existing
methods is that, in cases where communication availabil-
ity is high, the team is unable to use the extra communi-
cation to generate a new strategy tailored to the specific
starting locations of the agents. For this reason, SDPbA
and TSPbA are particularly relevant to cases where com-
munication quality is lower than that required by existing
algorithms.

D. SMALLER STANDARD DEVIATION IN METRICS
We observe that the standard deviation in R-MCT for the
playbook algorithms is smaller than the standard deviation
in R-MCT for existing task allocation algorithms.

Although the communication model parameter for a sce-
nario may seem very small, its effect is observable for simu-
lations as shown in the following example: If in a Bernoulli
model experiment, the Bernoulli Parameter p is 0.0001, the
probability that at least one message is delivered to exactly
one agent successfully over an ACBBA simulation that lasts

VOLUME 10, 2022 124095



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 10. p-value results of Kolmogorov–Smirnov (K.S.) test for significance. Lower values indicate greater statistical significance.
A comparison is preformed between each of the two playbook algorithms and each of the four comparison methods. Significance
tests are based on 40 trials are run for each combination of target number (x-axes) and communication quality level (sub-plots) for
three different communication models (sub-figures left to right). A p-value of 0.05 is also shown for comparison (dotted line).

t seconds is given by the expression (1 − (1 − p)mt ), where
m is the number of messages attempted per second (m = 66
for ACBBA). For a simulation duration of 30 seconds, this
probability is approximately 0.18. Similarly, for a Gilbert-
Elliot model experiment that has a duration of 30 seconds,
the channel state changes 60 times (since the time step is
0.5 seconds). In each state, an agent sends m/2 messages.
If the state is good, all the m/2 messages will be delivered
successfully, and the probability that the channel state is good
for at least one time step is given by the expression 1 − p2tbb,

where t is the simulation duration. This probability for a
30 second ACBBA simulation with pbb = 0.995 is 0.26.
For the Rayleigh model, the probability of a message getting
dropped is highly scenario-dependent as the model considers
path loss due to distance between agents, which changes with
the scenario geometry.

The successful messages can change the output of the
simulation, depending on several randomized factors, such as
the locations of the communicating agents. For example, if
agents A and B start close to each other in the map, they will

124096 VOLUME 10, 2022



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 11. An instance of agents completing long first hauls to enter
their respective regions.

have similar costs to all targets. In this case a successfully
delivered message from A to B will not be of great value
because B does not receive any new information regarding
costs to targets. On the contrary, if one of the agents starts
away from the other agent, they will have different costs
to targets. In which case, a successfully delivered message
from A to B will provide new information to B and it will
re-evaluate its own path and give lower priority to targets that
are away from itself but closer to A.
In addition to the number of messages received by each

agent, the overall geometry of the scenario also has a notice-
able effect on the performance of all four algorithms. The
geometry includes the locations of targets in clusters as well
as starting locations of agents. If the targets are oriented in
clusters in such a way that there are a few outlying targets,
and if no agent has a starting location that is close to the
outlying targets, then the outlying targets tend to end up at
the bottom of the priority lists of the agents when they run
ACBBA, DHBA, PIA or GA. As a result, the agents visit all
other targets first and then move to visit the outlying targets,
resulting in a poor overall performance (a high R-MCT).
SDPbA and TSPbA avoid this problem because their target
assignment logic guarantees that one agent is assigned the
outlying target(s).

Another case where the starting locations of agents plays
an important role is when they all start close to each other.
In this case, if the communication level is on the lower side
of the range included in the experiments, the agents exhibit a
leader-follower behavior when runningACBBA,DHBA, PIA
and GA, because the lack of communication results in several
(or in some cases, all) agents following one agent in com-
pleting several tasks. This occurs because all the agents have
similar costs to targets and their inability to communicate
and reach consensus results in them exhibiting this behavior.
Due to this, the team of agents produces results that are no
better than results produced by a single agent by itself. In this

case, the playbook algorithms perform much better because
the agents diverge to different sets of tasks.

VIII. CONCLUSION
In this paper, we propose two new algorithms — the Spatial
Division Playbook Algorithm (SDPbA), and the Traveling
Salesman Playbook Algorithm (TSPbA)— that are designed
to perform better than existing decentralized task alloca-
tion algorithms in scenarios with very low communication
availability. In our experiments, we use three communication
models, and vary communication quality by defining five
communication levels.We also vary the number of targets and
compare the performance of the proposed algorithm against
four task allocation algorithms, ACBBA, DHBA, PIA and
GA on the basis of two time-based metrics, R-MCT and
A-MCT.

The experimental results show that SDPbA and TSPbA
perform better on an average than ACBBA, DHBA, PIA
and GA at lower communication levels and at number of
targets greater than 30, especially with respect to average
mission completion time (R-MTC). Among the two playbook
algorithms, TSPbA performs better than SDPbA in all cases
except for when the number of targets are 10.

Our experiments showed that the relative performance of
algorithms was effected by the particular communication
model was used. This effect was easier to see for the alter-
native A-MTC performance metric (where the best perform-
ing algorithm was highly correlated with the communication
model) but it can also be seen with respect to the R-MTC
performance metric by observing the ranking of non-best
algorithms.

On the other hand, the favorable relative performance of
the playbook algorithms with respect to the R-MTC did not
appear to be impacted by the communication model being
used. The fact that the playbook algorithms performed well
in scenarios with very low communication and many targets
regardless of communication model suggests that the play-
book algorithms, and especially TSPbA, may have useful
applications in a variety of low-communication settings.

APPENDIX COMMUNICATION MODELS USED
IN OUR EXPERIMENTS
We now describe the three communication model used in our
experiments, each in its own subsection.

A. BERNOULLI MODEL
The Bernoulli model uses a parameter (the Bernoulli
Parameter), p ∈ [0, 1] which is the probability that a message
sent from an agent is received by another agent. p is assumed
to remain constant throughout a single simulation run. The
communication attempts are assumed to be independent and
identically distributed.

B. GILBERT-ELLIOT MODEL
Thismodel assumes that the communication channel between
two agents is a Markov chain, which has two possible
states, Good (messages can be successfully sent) and

VOLUME 10, 2022 124097



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 12. Mean (color circles) and standard deviation (color error bars) of performance with respect to the A-MTC metric.
Six algorithms are compared in different scenarios. 40 trials are run for each combination of target number (x-axes) and
communication quality level (sub-plots) for three different communication models (sub-figures left to right). Five agents are
used in all experiments.

Bad (messages will be dropped). Figure 14 illustrates the
Markov chain and its states. The channel can transition
between these two states after every time step t . This
behavior is governed by transition probabilities, defined as
follows:

(a) Good-Good Transition Probability (pgg) is the proba-
bility that the channel is in the Good state in the next
time step, given that it is already in the Good state.
The complement of this probability is the Good-Bad
Transition Probability (pgb), which is the probability
that the channel is in the Bad state in the next time
step, given that it is already in the Good state. Thus,
pgg = 1− pgb.

(b) The Bad-Bad Transition Probability (pbb) is the prob-
ability that the channel is in the Bad state in the next
time step, given that it is already in the Bad state.
The complement of this probability is the Bad-Good
Transition Probability (pbg), which is the probability
that the channel is in the Good state in the next time
step, given that it is already in the Bad state. Thus,
pbb = 1− pbg.

In this research, we use a fixed value of t , which is 0.5
seconds.

C. RAYLEIGH FADING MODEL
This model considers two effects that attenuate the signal
strength: fading and path loss. Fading is the attenuation in

124098 VOLUME 10, 2022



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 13. p-value results of Kolmogorov–Smirnov (K.S.) test for significance. Lower values indicate greater statistical significance.
A comparison is preformed between each of the two playbook algorithms and each of the four comparison methods. Significance
tests are based on 40 trials are run for each combination of target number (x-axes) and communication quality level (sub-plots) for
three different communication models (sub-figures left to right). A p-value of 0.05 is also shown for comparison (dotted line).

signal strength due to interference from objects in the envi-
ronment. Signals from the transmitting agent take several
paths to the receiving agent due to these objects, resulting in
interference at the receiver’s end, which may be constructive
or destructive in nature. The envelope of the channel response
varies according to the Rayleigh distribution. Nayak et al. [5]
use Inverse Discrete Fourier Transform (IDFT) to generate
the Rayleigh random variate sequence. The power loss due to
fading is denoted by PF .
Path loss is the attenuation in the signal as the distance

between the transmitting and receiving agents increases. This

path loss, given by PPL , is given by the equation:

PPL = PL0 + 10γ log10(
d
d0

)

where, d is the distance between the transmitting and receiv-
ing agents, PL0 is the path loss at the reference distance d0
and γ is the path loss exponent.

If the transmitted signal power is PT , the total power
received is given by PR = PT − PF − PPL . We define a sen-
sitivity threshold PS so that if PR is less than PS , the message

VOLUME 10, 2022 124099



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

FIGURE 14. Communication channel in the Gilbert-Elliot modeled as a
Markov chain (from Nayak et al. [5]).

FIGURE 15. Received signal strength using the Rayleigh fading model.
Dropped packets are marked with black dots. Note that chance a packet
is dropped increases with distance.

packet is dropped. This drop in received signal strength due
to path loss and fading is illustrated in Figure 15.

APPENDIX EXISTING TASK ALLOCATION ALGORITHMS
USED FOR COMPARISON
The following four algorithms are used for comparison with
the Playbook Algorithms: ACBBA, PIA, DHBA, and GA.
These algorithms are chosen because they all have different
approaches to task allocation, and these different approaches
may or may not work better than the Playbook algorithm
in the scenarios under consideration. ACBBA and PIA are
auction-based algorithms derived fromCBBA, and are shown
to performwell when communication is imperfect [5]. DHBA
uses the Hungarian Assignment algorithm to allocate tasks,
while GA is a decentralized version of the Genetic Algorithm
that mutates and preserves the best solutions while discarding
the other solutions.

A. ASYNCHRONOUS CONSENSUS-BASED
BUNDLING ALGORITHM (ACBBA)
This algorithm (Algorithm 3) is an improved version of
CBBA. The input arguments are distance traveled (di), win-
ning bids list (Wi), task list (T ), iteration count (I ) and bundle
size upper bound (B). It operates in two phases, assignment
and consensus. In the assignment phase each agent greedily
determines an ordered task set, called a bundle (bi) and
updates its winning bid list with the bids of the task list. In the
consensus phase, the agents broadcast messages that contain
their bids list. If agents receive messages from other agents
that have better bids, they update their own winning bids lists,
thus achieving consensus. Both the phases are repeated by
each agent I times.

Algorithm 3 ACBBA
1: function ACBBA(di,Wi,T , I ,B)
2: bi←None
3: for k←1 to I do
4: (bi,Wi)←Assignment(bi, di,Wi,T ,B)
5: SendBids(Wi)
6: (bi,Wi)←Consensus(bi,Wi,B)
7: end for
8: return bi
9: end function

Algorithm 4 PIA
1: function PIA(di, Si,T , I ,B)
2: bi←None
3: for k←1 to I do
4: (bi, Si)←Assignment(bi, di, Si,T ,B)
5: SendSignificanceList(Si)
6: (bi, Si)←ConsensusAndRemoval(bi, Si,B)
7: end for
8: return bi
9: end function

B. PERFORMANCE IMPACT ALGORITHM (PIA)
The input arguments to this algorithm (Algorithm 4) are dis-
tance traveled (di), significance list (Si), task list (T ), iteration
count (I ) and bundle size upper bound (B). PIA modifies
CBBA by having two phases, namely the task inclusion phase
and the consensus and task removal phase. In the task inclu-
sion phase, each agent calculates the ‘significance’ of tasks
not included in its bundle (bi) and updates the task bundle and
significance list. The significance of a task is the impact that
the task has on the cost of the bundle. In the consensus and
task removal phase, agents exchange their significance lists
and achieve consensus by updating their bundles for tasks
that have been outbid by other agents. Both the phases of this
algorithm are repeated I times.

C. DECENTRALIZED HUNGARIAN-BASED
ALGORITHM (DHBA)
In DHBA, as shown in Algorithm 5, the input arguments are
distance traveled (di), task list (T ) and iteration count (I ).
Each agent first initializes a cost matrix (Ci) corresponding to
the cost to complete all unfinished tasks and then proceeds to
two phases, the assignment phase and the update phase. In the
assignment phase, each agent runs the Hungarian Assignment
algorithm to get an unfinished task (ti) and broadcasts its cost
matrix to all other agents. In the update phase, each agent
receives the matrix from other agents and updates its own
cost matrix. Similar to the other algorithms, this process is
repeated by each agent I times.

D. GENETIC ALGORITHM (GA)
The decentralized Genetic Algorithm (Algorithm 6) is run
in parallel by all agents, and takes the task list (T ) and the
initial population (pi) as input. The initial population consists

124100 VOLUME 10, 2022



A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

Algorithm 5 DHBA
1: function DHBA(di,T , I )
2: ti←None
3: Ci←None
4: for k←1 to I do
5: ti←Assignment(Ci)
6: SendCostMatrix(Ci)
7: Ci←Update(Ci)
8: end for
9: return Ci

10: end function

Algorithm 6 GA
1: function GA(T , pi)
2: ti←currentSolution(pi)
3: SendCurrentSolution()
4: receiveSolutions()
5: pi←mutatePopulation(ti)
6: pi←updatePopulation()
7: return pi
8: end function

of solutions to the multi-agent task allocation problem. The
function currentSolution(pi) (line 2) returns the best
solution (ti) from the current population. With each itera-
tion, the population reproduces and mutates to provide better
solutions. The agents continue executing the current solution
till a better solution is returned by the function. Agents also
keep broadcasting their current best solutions (line 3). The
current solution is mutated and these mutations are added to
the population (line 5). Using this approach of the GA, the
best solutions stay in the population while the worst solutions
are discarded. Solutions that are received from other agents
(line 4) are incorporated into the current population of that
agent’s genetic algorithm (line 6).

ACKNOWLEDGMENT
The authors would like to thank Estefany Carrillo,
Sharan Nayak, and Suyash Yeotikar, whose work on devel-
oping the simulation framework for running experiments on
multi-agent task allocation algorithms has provided them
with a strong foundation for conducting this research. Akshay
Bapat worked on this project while at the University of
Maryland and then later moved to Magna International.

REFERENCES
[1] S. Waharte and N. Trigoni, ‘‘Supporting search and rescue operations with

UAVs,’’ inProc. Int. Conf. Emerg. Secur. Technol., Sep. 2010, pp. 142–147.
[2] A. Barrientos, J. Colorado, J. D. Cerro, A. Martinez, C. Rossi, D. Sanz, and

J. Valente, ‘‘Aerial remote sensing in agriculture: A practical approach to
area coverage and path planning for fleets of mini aerial robots,’’ J. Field
Robot., vol. 28, no. 5, pp. 667–689, 2011.

[3] N. Nigam, S. Bieniawski, I. Kroo, and J. Vian, ‘‘Control of multiple UAVs
for persistent surveillance: Algorithm and flight test results,’’ IEEE Trans.
Control Syst. Technol., vol. 20, no. 5, pp. 1236–1251, Sep. 2012.

[4] J. A. Shaffer, E. Carrillo, and H. Xu, ‘‘Hierarchal application of receding
horizon synthesis and dynamic allocation for uavs fighting fires,’’ IEEE
Access, vol. 6, pp. 78868–78880, 2018.

[5] S. Nayak, S. Yeotikar, E. Carrillo, E. Rudnick-Cohen, M. K. M. Jaffar,
R. Patel, S. Azarm, J. W. Herrmann, H. Xu, and M. Otte, ‘‘Experimental
comparison of decentralized task allocation algorithms under imperfect
communication,’’ IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 572–579,
Apr. 2020.

[6] M. Otte, M. J. Kuhlman, and D. Sofge, ‘‘Auctions for multi-robot task
allocation in communication limited environments,’’ Auto. Robots, vol. 44,
nos. 3–4, pp. 547–584, Mar. 2020.

[7] L. Johnson, S. Ponda, H.-L. Choi, and J. How, ‘‘Asynchronous
decentralized task allocation for dynamic environments,’’ in Proc.
Infotech@Aerospace, Mar. 2011, p. 1441.

[8] L. Johnson, S. Ponda, H.-L. Choi, and J. How, ‘‘Improving the efficiency of
a decentralized tasking algorithm for UAV teams with asynchronous com-
munications,’’ in Proc. AIAA Guid., Navigat., Control Conf., Aug. 2010,
p. 8421.

[9] S. Ismail and L. Sun, ‘‘Decentralized hungarian-based approach for fast
and scalable task allocation,’’ in Proc. Int. Conf. Unmanned Aircr. Syst.
(ICUAS), Jun. 2017, pp. 23–28.

[10] W. Zhao, Q. Meng, and P. W. H. Chung, ‘‘A heuristic distributed task
allocation method for multivehicle multitask problems and its application
to search and rescue scenario,’’ IEEE Trans. Cybern., vol. 46, no. 4,
pp. 902–915, Apr. 2016.

[11] J. Kirk, ‘‘Fixed start/end point multiple traveling salesmen problem—
Genetic algorithm,’’ MATLAB Central File Exchange, 2020. [Online].
Available: https://www.mathworks.com/matlabcentral/fileexchange/
21299-fixed-start-end-point-multiple-traveling-salesmen-problem-
genetic-algorithm

[12] H.-L. Choi, L. Brunet, and J. P. How, ‘‘Consensus-based decentralized
auctions for robust task allocation,’’ IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, Aug. 2009.

[13] L. Johnson, H.-L. Choi, and J. P. How, ‘‘The hybrid information and
plan consensus algorithm with imperfect situational awareness,’’ in Dis-
tributed Autonomous Robotic Systems. Cham, Switzerland: Springer, 2016,
pp. 221–233.

[14] J.Wang, Y. Gu, and X. Li, ‘‘Multi-robot task allocation based on ant colony
algorithm,’’ J. Comput., vol. 7, no. 9, pp. 2160–2167, 2012.

[15] R. Patel, E. Rudnick-Cohen, S. Azarm, M. Otte, H. Xu, and
J. W. Herrmann, ‘‘Decentralized task allocation in multi-agent systems
using a decentralized genetic algorithm,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2020, pp. 3770–3776.

[16] A. Samiei, S. Ismail, and L. Sun, ‘‘Cluster-based Hungarian approach to
task allocation for unmanned aerial vehicles,’’ in Proc. IEEE Nat. Aerosp.
Electron. Conf. (NAECON), Jul. 2019, pp. 148–154.

[17] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, ‘‘Dec-MCTS:
Decentralized planning for multi-robot active perception,’’ Int. J. Robot.
Res., vol. 38, nos. 2–3, pp. 316–337, 2019.

[18] M. Rantanen, N. Mastronarde, J. Hudack, and K. Dantu, ‘‘Decentralized
task allocation in lossy networks: A simulation study,’’ in Proc. 16th Annu.
IEEE Int. Conf. Sens., Commun., Netw. (SECON), Jun. 2019, pp. 1–9.

[19] M. Alighanbari and J. How, ‘‘Robust decentralized task assignment for
cooperative UAVs,’’ in Proc. AIAA Guid., Navigat., Control Conf. Exhib.,
Aug. 2006, p. 6454.

[20] P. B. Sujit, A. Sinha, and D. Ghose, ‘‘Multi-UAV task allocation using
team theory,’’ in Proc. 44th IEEE Conf. Decis. Control, Dec. 2005,
pp. 1497–1502.

[21] J. Radak, D. Schneider, C. Henke, and H. Frey, ‘‘Performance of consen-
sus and formation control subject to Bernoulli, slotted Aloha and IEEE
802.11p simulation models,’’ in Proc. 12th IFIP Wireless Mobile Netw.
Conf. (WMNC), Sep. 2019, pp. 63–70.

[22] J. W. Herrmann, ‘‘Data-driven metareasoning for collaborative
autonomous systems,’’ Inst. Syst. Res., Univ. Maryland, College
Park, MD, USA, Tech. Rep. ISR;TR_2020-01, 2020. [Online]. Available:
https://drum.lib.umd.edu/handle/1903/25339 and http://hdl.handle.net/
1903/25339, doi: 10.13016/0xho-koz2.

[23] E. Carrillo, S. Yeotikar, S. Nayak, M. K. M. Jaffar, S. Azarm,
J. W. Herrmann, M. Otte, and H. Xu, ‘‘Communication-aware multi-agent
metareasoning for decentralized task allocation,’’ IEEE Access, vol. 9,
pp. 98712–98730, 2021.

[24] A. V. Bapat, ‘‘Development of decentralized task allocation algorithms for
multi-agent systems with very low communication,’’ M.S. thesis, A. James
Clark School Eng., Inst. Syst. Res., Univ. Maryland College Park, College
Park, MD, USA, 2020.

[25] N. Christofides, ‘‘Worst-case analysis of a new heuristic for the travelling
salesman problem,’’ Graduate School Ind. Admin., Carnegie-Mellon Univ.
Pittsburgh Manag. Sci. Res. Group, Pittsburgh, PA, USA, Tech. Rep., 388,
1976.

VOLUME 10, 2022 124101

http://dx.doi.org/10.13016/0xho-koz2


A. Bapat et al.: Distributed Task Allocation Algorithms for Multi-Agent Systems With Very Low Communication

[26] J. Beardwood, J. H. Halton, and J. M. Hammersley, ‘‘The shortest path
through many points,’’ Math. Cambridge Philos. Soc., vol. 55, no. 4,
pp. 299–327, 1959.

[27] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, and A. Ng,
‘‘ROS: An open-source robot operating system,’’ in Proc. ICRA Workshop
Open Source Softw., 2009, p. 5.

[28] A. Koubâa, Robot Operating System (ROS), vol. 1. Cham, Switzerland:
Springer, 2017.

[29] X. Jia and M. Q.-H. Meng, ‘‘A survey and analysis of task allocation
algorithms in multi-robot systems,’’ in Proc. IEEE Int. Conf. Robot.
Biomimetics (ROBIO), Dec. 2013, pp. 2280–2285.

[30] A. Khamis, A. Hussein, and A. Elmogy, ‘‘Multi-robot task allocation:
A review of the state-of-the-art,’’ in Cooperative Robots and Sensor Net-
works 2015, A. Koubâa and J. R. Martínez-de Dios, Eds. Switzerland:
Springer, 2015, pp. 31–51, doi: 10.1007/978-3-319-18299-5.

[31] A. A. Khuwaja, Y. Chen, N. Zhao, M.-S. Alouini, and P. Dobbins, ‘‘A sur-
vey of channel modeling for UAV communications,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2804–2821, 4th Quart., 2018.

[32] M. Dorigo, M. Birattari, and T. Stutzle, ‘‘Ant colony optimization,’’ IEEE
Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[33] D. Ruppert and D. S. Matteson, Statistics and Data Analysis for Financial
Engineering, vol. 13. Cham, Switzerland: Springer, 2011.

AKSHAY BAPAT received the B.S. degree in
mechanical engineering from IIT Jodhpur, India,
in 2018, and the M.S. degree in systems engineer-
ing from theUniversity ofMaryland, College Park,
MD, USA, in 2020.

In 2020, he was a Faculty Assistant at the
Department of Aerospace Engineering, Univer-
sity of Maryland. From 2020 to 2021, he was a
Robotics Test Engineer at Magna International in
Troy, MI, USA. Since 2021, he has been working

as a Robotics Perception Engineer with Magna International. His research
interests include multi-agent task allocation, motion planning, and robot
perception.

BHARATH REDDY BORA received the B.Tech.
degree in electronics and communication engi-
neering from GITAM University, Vizag,
Andhra Pradesh, India, in 2020. He is currently
pursuing the M.E. degree in robotics with the
University of Maryland, College Park, MD, USA.

He was an Intern at the Motion and Team-
ing Laboratory at the University of Maryland.
He is working as a Research Intern with the
Bio-Imaging and Machine Vision Laboratory.

His research interests include robotics, task planning/allocation, machine
vision, autonomous systems, embedded systems, the Internet of Things, and
robotics.

Mr. Bora contributed to the IEEE Student Body as the Technical Head and
a BoardMember of the Governing Council at Sure Trust, GITAMUniversity.

JEFFREY W. HERRMANN received the B.S.
degree in applied mathematics from the Georgia
Institute of Technology, Atlanta, GA, USA, in
1990, and the Ph.D. degree in industrial and sys-
tems engineering from the University of Florida,
Gainesville, FL, USA, in 1993.

He is currently a Professor with the University
of Maryland, College Park, MD, USA, where he
holds a joint appointment with the Department
of Mechanical Engineering and the Institute for

Systems Research. He is the author of the textbook Engineering Decision
Making and Risk Management (Wiley, 2015). His current research interests
include collaborative search and tracking and engineering design decision
making.

Dr. Herrmann is a member of ASEE, IISE, ASME, the Design Society, and
INFORMS. He is an Associate Editor of the Journal of Autonomous Vehicles
and Systems.

SHAPOUR AZARM received the B.S. degree in
mechanical engineering from the University of
Tehran, Tehran, Iran, in 1977, the M.S. degree in
mechanical engineering from George Washington
University, Washington, DC, USA, in 1979, and
the Ph.D. degree in mechanical engineering from
the University of Michigan, Ann Arbor, MI, USA,
in 1984.

He joined the University of Maryland, College
Park, in 1984, where he is a Professor of mechan-

ical engineering. He is a Senior Advisor of (journal of) Structural and
MultidisciplinaryOptimization (SMO). His research interests include predic-
tive modeling, engineering optimization, and decision analysis models and
methods.

Dr. Azarm is a fellow and a Life Member of the ASME. He was the
Editor-in-Chief of the Journal of Mechanical Design (ASME Transactions),
a Review Editor of SMO, an Associate Editor of (journal of) Mechanics
Based Design of Structures and Machines, and several other journals.

HUAN XU (Member, IEEE) received the B.S.
degree in mechanical engineering from Harvard
University, Cambridge, MA, USA, in 2007, and
the M.S. and Ph.D. degrees in mechanical engi-
neering from the California Institute of Tech-
nology, Pasadena, CA, USA, in 2008 and 2013,
respectively.

She joined the University of Maryland, College
Park, in 2013, where she is currently an Asso-
ciate Professor of aerospace engineering with a

joint appointment at the Institute for Systems Research and a member of
the Maryland Robotics Center. Her research interests include controls and
dynamical systems, safety certification for autonomous systems, and multi-
agent control.

Dr. Xu is a member of AIAA, AUVSI, and INCOSE.

MICHAEL W. OTTE (Member, IEEE) received
the B.S. degree in aeronautical engineering and
computer science from Clarkson University, Pots-
dam, NY, USA, in 2005, and the M.S. and Ph.D.
degrees in computer science from the University
of Colorado Boulder, Boulder, CO, USA, in 2007
and 2011, respectively.

From 2011 to 2014, he was a Postdoctoral Asso-
ciate at the Massachusetts Institute of Technology.
From 2014 to 2015, hewas aVisiting Scholar at the

U.S. Air Force Research Laboratory. From 2016 to 2018, he was a National
Research Council RAP Postdoctoral Associate at the U.S. Naval Research
Laboratory. He has been with the Department of Aerospace Engineering,
University of Maryland, College Park, MD, USA, since 2018. His research
interests include autonomous robotics, motion planning, and multi-agent
systems.

Dr. Otte is a member of AIAA. He has been an Associate Editor of
IEEE International Conference on Robotics and Automation and IEEE/RSJ
International Conference on Intelligent Robots and Systems, since 2020.

124102 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-319-18299-5

