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Pilots use situational awareness (SA) to make appropriate aeronautical decisions. Autonomous vehicles will not

have a human pilot (or operator) in the loopwhen off-nominal conditions present themselves, andwill rely on sensors

to build SA on their environment to make sound aeronautical decisions. As their sensors degrade, it is hypothesized

that a point exists where the SA those decisions are based off will be inadequate for sound aeronautical decisions. It

will be shown that this point canbe identified throughmodeling and simulation of a simple sensornetwork to complete

a task currently reserved forqualifiedpilots.This researchhighlights the process of determining anobjectivemeasure

for the subjective end and relates it to a possible safety of flight certification for an autonomous system to perform

tasks currently reserved for qualified pilots.

I. Introduction

M ANY modern aircraft can, and are, operated through a set of
pilot relief modes (i.e., autopilots) that allow the aircraft to

complete nearly an entire flight without a pilot touching the controls
and can be considered automation (which includes landing high-
performance jet aircraft on the pitching deck of an aircraft carrier [1]).
However, the pilot in command still has the responsibility for the
aircraft and is expected to operate the vehicle under current certifi-
cation standards. Pilots are trained to use their senses and experience
to build their situational awareness (SA) while flying to enable them
to safely accomplish their mission and make sound aeronautical
decisions. The future of aviation is unmanned and ultimately autono-
mous. However, by eliminating the human pilot (or operator in the
case of unmanned aircraft) we will be eliminating the SA that is
currently required to safely accomplish a mission when off-nominal
conditions present themselves. This paper defines an objective rela-
tionship between an autonomous vehicle SA when its sensors
degrade and the ability to accomplish a task currently reserved for
qualified pilots.
The first step in evaluating if the choices an autonomous system

makes match that of a qualified pilot is to determine if the SA of the
vehicle matches reality for the environment it is operating in. Since
the dawn of aviation, many of the innovations we currently take for
granted came from the military (some examples include radar [2],
medevac air ambulance [3], jet engines [4], glow sticks [5], and
advanced night vision technology [6]). Many military applications
can transition easily to the civilian sector, as their functionality is
similar. As both military and civilian pilots use SA, we elected to
study SA of an autonomous vehicle completing a task currently
reserved for qualified military pilots. In prior work we examined
obtaining a safety of flight certification for a system that displays
autonomous behavior. The underlying focus of our research relates to
certifying an autonomous naval system to perform tasks currently
reserved for qualified pilots. However, during our research we deter-
mined that in order for autonomous behavior to be certified it would
need to demonstrate that it can make decisions similar to fully
qualified pilots [7,8], to include situations where a fully qualified

pilot makes decisions based on their SA when encountering off-
nominal or unexpected conditions (such as degradation in the quality
of information available to them).
Typically aircraft are designed to objectivemeasures (i.e.,maintain

a desired speed at a desired altitude). During the certification process
the system under test will be required to demonstrate that they can
complete a subjective end (i.e., integrate with currently fielded
systems). It is extremely difficult for designers to build an aeronaut-
ical system to accomplish a subjective end without an objective
measure. This research focuses on developing a relationship between
sensor performance degradation and vehicle SA in an attempt to
establish an objective measure that can be provided to designers and
certification officials for autonomous air vehicles to complete a task
currently reserved for qualified pilots. This will enable certification
officials to trust that an autonomous system has a clear understanding
of the environment it is currently operating in, and will make appro-
priate aeronautical decisions (based off its programming) similar to
those of a fully qualified pilot. Wewill develop an objective relation-
ship between sensor degradation/error, through a modeling and
simulation (M&S) environment, in a simple sensor network and
sufficient SA for an autonomous vehicle to make a decision currently
reserved for a qualified pilot. First, we will develop a scenario where
an autonomous vehicle is reliant on its sensors to build its SA. The
scenario will be built in such a way that the only factors affecting the
SA of the vehicle are the accuracy of its sensors.Wewill then degrade
those sensors to a point where the decisions it makes are no longer
sound aeronautical decisions. And as a result of this work two
inequalities (objectivemeasure) are defined for when an autonomous
vehicle has sufficient SA (subjective end) tomake decisions currently
reserved for qualified pilots.
The contributions of this paper are 1) the development of an

objective measure for autonomous vehicle SA that accounts for
sensor degradation; 2) the development of an scenario, within a
Department of Defense (DoD)–recognized M&S environment, that
specifically evaluates the effects of sensor degradation on error
distance of a fused track of a threat aircraft; 3) the use of design of
experiments (DOE) to determine the effects of sensor degradation
and produce a predictive equations for the error distance of the fused
track; and 4) use of subject matter expert (SME) opinion to define the
point at which (within this scenario) the fused error distance is
inadequate to make a decision currently reserved for qualified pilots.
This paper is structured as follows. In Sec. II, in addition to a

review of related research in the area, we will discuss the issue of
defining an objective measure for a subjective end to aircraft design-
ers. We will discuss the evolution of handling qualities (HQ) speci-
fications to include the use of the Cooper–Harper Rating (CHR)
scale, which enables an objective value for a subjective task. We will
also demonstrate how the scale was modified for the evaluation of a
highly automated task and later used during the test and evaluation
(T&E) of an autonomous aeronautical system. In Sec. III we will
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begin our use of DOE and an M&S environment to develop a
quantitative relationship between sensor degradation and autono-
mous vehicle SA. In Sec. IV we will develop an objective measure
for an autonomous vehicle’s SA to accomplish a task, currently
reserved for a qualified pilot, as its sensors degrade. In Sec. V, we
summarize our findings as they relate to certifying autonomous
systems to complete tasks currently reserved for qualified pilots.
Directions for future research are also provided.

II. Background

This research focuses on developing a relationship between sensor
performance degradation and vehicle SA (considered largely a sub-
jective opinion). This is in an attempt to establish an objective
measure that can be provided to designers, and certification officials,
of an autonomous vehicle attempting to complete a task currently
reserved for qualified pilots. Some related work is mentioned in
Sec. II.A. Translating a subjective end into objective measures is
not a new concept. Section II.B details how test pilots translate their
opinion of the flying qualities of an aircraft into measures engineers
can use to help improve the performance of the control laws via
established rating scales. Section II.C details how the rating scales
outlined in Sec. II.B have been transitioned to allow a test pilot to
describe the behavior of an aircraft during a highly automated task
(landing a high-performance jet aboard an aircraft carrier “hands-
free”), and later for the evaluation of an autonomy demonstration
vehicle. Similar to the use of ratings scales detailed in Sec. II, design-
ers and certification officials will find an objective measures for
subjective ends invaluable for evaluating the SA on an autonomous
system.

A. Current Methods for Flight Certification and SA

This research focuses on the SA of an autonomous system as its
sensors degrade. This will help build trust in autonomy, as without
trust certification officials will be reluctant to grant a safety of flight
certification for a system to operate without a human in the loop [9].
Currently a formalized/approved process does not exist for naval
aircraft/systems that exhibit autonomous behavior (the system is able
to respond to situations that were not explicitly preprogrammed) as
there has never been a requirement for one to be developed. Several
possible approaches have been proposed for autonomous control
(dealing with the type of controller applied to the vehicle [10],
updated the path planning based on sensor input [11], dynamically
replan the flight path via adaptive controllers [12]) but none dealtwith
suboptimal sensor performance or were vetted through naval flight
clearance authorities. Several issues have been identified for certifi-
cating autonomy (i.e., the complexity of autonomous systems results
in an inability to test under all known conditions, difficulties in
objectively measuring risk, and an ever-increasing cost of rework/
redesign due to errors found late in the verification and validation
(V&V) process [13]).
An understanding of SA as it relates to aviation is critical to

understanding how it will relate to the certification of autonomy.
One of the most commonly accepted definitions for SA is “the
perception of elements in the environment within a volume of time
and space, the comprehension of their meaning, and the projection of
their status in the near future” [14]. During flight school, student
naval aviators (pilots) are taught that SA in aviation is being able to
accurately diagnosewhat is happening around them and predict what
will happen in the immediate future, thus enabling them to perform
the assigned mission safely. Students with high SA are able to “stay
ahead of the aircraft,” whereas students with low SA tend to seem to
be “holding onto the stab” during flight. From their first flight,
aviators learn to use every available resource to develop their SA
(e.g., radio calls, aircraft instruments, visually scanning outside of the
aircraft, onboard radar, electro-optical/infrared (EO/IR) sensors, and
seat of the pants feelings). Before obtaining full qualification, naval
aviators will have proven to their commanding officer (CO) that they
can develop their SA to an appropriate level that they can safely
complete their assigned mission during off-nominal conditions [15].
The measurement of SA has proven to be intangible, and largely

subjective. Pilots quickly learn that the only way to know exactly the
level of their current SA is when they realize that they have none.
When a pilot’s SA is high (i.e., they have an accurate understanding
of the environment they are operating in) they can make sound
aeronautical decisions. However, when a pilot’s SA is low (which
they may or may not know at the time) their aeronautical decisions
may not be sound.
Autonomous vehicles will use their sensors to build SA of their

environment.When sensors are operating at 100% the SA they provide
the vehicle should be adequate to make sound aeronautical decisions.
However, at some point of sensor degradation the SA provided will no
longer match reality. The advent of unmanned aerial vehicles (UAVs)
has sparked an increase in research within the academic and flight test
communities. When programming UAVs with automation (such as
what actions to take in the case of lost link), or autonomous function-
ality (allowing the vehicle to make decisions based off the conditions
they sense), it is vital for the system to be able to safety complete the
assignedmission. Sensors are typically installed to inform the operator,
or system, of the conditions the vehicle is operating in. These sensors
couldbe as simpleas a camera, or as complicated as a fusionofmultiple
sensors. Increases in processing power have enabled these vehicles to
perform simple missions (e.g., collision avoidance and visual naviga-
tion), under fairly static conditions, providing they have access to
sensor inputs. However, when human pilots realize that there may be
an issuewith their SA, they have the training and experience to rely on
various inputs to diagnose their current interpretation of reality. Unless
a system is programmed to react to sensor degradation, certification
officials will hesitate to allow the system to make decisions based on
the sensor input without a human in the loop to ultimately shoulder the
responsibility for the air vehicle.
For pilots to make sound decisions, they need to have a clear

understanding of the situation/environment they are operating in
[16]. Teaching prospective pilots how to develop their SA and
knowing when to question their perception are critical portions of
flight training [15,17]. Researchers have spent decades developing
models and methods for evaluating a pilots’ SA (highly subjective)
during flight and translating it into an objective measure [16–20].
Two methods that have provided ample data for research involve
freezing a simulation and asking questions relating to the pilot’s SA
or asking questions of a pilot postmission [17,19]. Yet, neither of
these methods allows pilots to rate their SA in real time to determine
when it is lacking. One school of thought was to offer pilots more
information to help build their mental picture. Modern aircraft can
present a massive volume of data to the pilot. However, this overload
of information has a tendency to detract from the pilot’s SA, andwork
has been done to optimize how the information is presented [21,22].
As UAVs have become commonplace in aviation, the issue of

sufficient operator SA has become a hot button issue. How can
operators maintain appropriate SA to their air vehicle when they
are not actually in the vehicle (as a pilot is for manned aviation)?
Several papers have been published regarding increasing the SA of a
detached operator as to the environment the vehicle/system is cur-
rently operating in (to include the status of the vehicles subsystems)
on Earth [23–30] and space [31,32]. As vehicle-based computing
power has increased, research has been accomplished to demonstrate
that a vehicle can navigate via onboard sensors (without direct
operator direction) [33–38]. It has been proposed that, as the level
of autonomy increases, the required level of SA for the human
operator will decrease and the required SA of the air vehicle will
increase [39,40]. However, the current body of work lacks the ability
to demonstrate to safety of flight clearance officials the ability of an
autonomous system to maintain SA while completing its assigned
mission as sensor performance degrades.

B. Development of an Objective Measure (Cooper–Harper Scale)
for a Subjective End (Handling Qualities)

This subsection is used to illustrate how an objective measure
(the dynamics of an aircraft, e.g., short period) can be used to
accomplish a subjective end (CHR of the aircraft handling qualities).
Throughout the 1920s and 1930s, despite meteoric advances in
structures, aerodynamics, and propulsion, aircraft HQ languished
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under the conception that it would not be feasible to create objective

design standards (satisfying black-and-white requirements) to achieve

a subjective ends (satisfying pilots’ needs) [41]. Aircraft designers did
not have a clear direction forwhat equated topositiveHQ.By the1940s

the firstHQspecificationswere established, enabling aircraft designers

to build aircraft that would have satisfactory HQ for pilots. The

specification dealt with both longitudinal and lateral characteristics

for the full range of aircraft configurations. One example of an objec-
tive measure that led to favorable HQ (subjective end) was placing a

quantitative upper limit on the absolutevalue of the stick-forcegradient

[41]. For further details on the establishment of objective measures for

subjective ends for the first HQ specifications we refer the reader to

Chapter 3 of Ref. [41].
Determining an aircraft’s HQ is a daunting task, as different pilots

may have different opinions on this subjective judgment. During test

pilot school (TPS), future test pilots are trained on classical test

techniques to evaluate aircraft. One of the corner stones of this
training is the Cooper–Harper Handling Qualities Rating Scale as it

forces a pilot to make a series of relatively unambiguous decisions to

arrive at a rating of the current HQ of the aircraft [42]. CHR is the

basis of theU.S. flying qualitiesmilitary specification (Mil-F-8785B,

later superseded by 8785C [43]), and divides the pilots opinion of the
aircraft HQ into four levels. Level 1 is satisfactory. Level 2 is not

satisfactory HQ, but performance is satisfactory. Level 3 includes

maximum workload to get adequate performance (and deals with

aircraft controllability). Level 4 is uncontrollable [42–44]. CHR 1–3
equate to Level 1 HQ. CHR 4–6 equate to Level 2 HQ. CHR 7–9
equate to Level 3 HQ. CHR 10 equates to Level 4 HQ. Figure 1 is
fromMil-F-8785C and illustrates how an objective measure (aircraft
characteristics, short-period dynamics) can be related to a subjective
measure (flying quality level). For further details on aircraft HQ we
refer the reader to Ref. [44].

C. Cooper–Harper Adjusted for Confidence in Automation

CHR allows the flight test community a method of achieving
repeatable results for HQ evaluations. The scale was later used as
the blueprint for a rating scale that measures a test pilot’s confidence
of a vehicle accomplishing a highly automated task, landing high-
performance jet aircraft on the pitching deck of an aircraft carrier
without pilot input [1]. The Precision Approach and Landing System
(PALS) installed on United States Navy (USN) aircraft carriers allow
a pilot to “couple” with the ship and land during adverse conditions
(e.g., extreme weather, or when pilots are unable to perform an
arrested landing on their own). Figure 2 is the PALS/Pilot Quality
Rating (PQR) used during PALS certification testing. PQR allows
test pilots to put their subjective opinion (confidence in the system at
accomplishing a task) into an objective measure (PQR rating).
For certification, a PALS system must return a PQR of 3 or less.
The PQR scale gives PALS engineers an objective measure (PQR
rating) for a subjective end (pilot confidence in the system) to use as

Fig. 1 Relating short-period aircraft dynamics to aircraft handling qualities levels during nonterminal flight phases that are normally accomplished
using gradual maneuvers and without precision tracking, from Mil-F-8785C [43].
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they adjust the parameters within the system during certification
testing [45].
PQR was later adopted by a flight test team evaluating an autono-

mous controller completing theUnited StatesMarine Corps (USMC)
resupply mission in an optional piloted UH-1 helicopter during an
autonomy demonstration program. The vehicle was able to use its
onboard sensors (Global Positioning System [GPS], light detection
and ranging [LiDAR], EO/IR cameras) to build SA and complete the
resupply mission in both controlled and mission representative con-
ditions [8]. However, on at least two occasions the safety pilot had to
disengage the autonomous functionality due to safety of flight con-
cerns when the systems SA did not match reality. The first instance
required the safety pilot to take control when the vehiclewas tracking
dangerously close to trees (PQR-5). The second instance was on a
later test flight and required the safety pilot to take control to avoid
flying into trees (PQR-6). As these events occurred late in demon-
stration program, the test team decided to add a delay to the system
before it started moving (to allow the onboard processors to spend
extra time building SA of the environment). Once the delay was
added to the system, further issues with path planning were not seen
[47]. However, the fact that by simply adding a delay (giving the
system more time to process its sensor data) to the system seemed to
correct the inadequatevehicle SA implies that theremay be a relation-
ship between sensor degradation and SA in an autonomous system.

III. Problem Formation

In Sec. II.C we identified a possible relationship between sensor
performance and vehicle SA in an autonomous system. In Sec. III we
develop a relationship between sensor degradation and vehicle SA in

an M&S environment through the use of DOE [48]. DOE has been

used in the T&E of naval systems in the past. In a 2014 paper

McCarley and Jorris used DOE during the investigation of an F/A-

18 E/F strafing anomaly. In their work, DOE was used as a means of
gaining the most statistical information from the fewest number of

test points and ultimately generated a predictive equation that

explained the strafing anomaly [49].
The United States Naval Test Pilot School (USNTPS) teaches

DOE, and this section is structured to follow the steps of the process

[50]. In Sec. III.A we will detail the M&S environment, give a

statement of the problem, and detail the scenariowewill bemodeling.
In Sec. III.B we will describe the choice of experimental factors

(variables) and detail howwewill measure them. In Sec. III.Cwewill

discuss the measures of performance (MOP) for our experiment.
Section III.D will detail how we plan to express the fused error

distance as a function of the sensor errors.

A. M&S Environment and Statement of the Problem

As a truly autonomous systemwas not available for our evaluation,
we elected to use a M&S environment for our research. Within the

M&S environment we developed a scenario where an autonomous

vehicle is reliant on its sensors to build its SA. The scenario was
developed in such a way that the only factors affecting the SA of the

vehicle are the accuracy of its sensors.Within the scenario the vehicle

was required to make a decision, currently reserved for qualified

pilots, based only on its degraded sensors.
For this experiment we used the Advanced Framework for Simu-

lation, Integration and Modeling (AFSIM) environment. AFSIM is

an engagement and mission level simulation environment written in

Fig. 2 PALS/Pilot Quality Rating Scale allows test pilots to objectively gage their confidence in the system under test [46].
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C++ originally developed by Boeing and now managed by the Air

Force Research Laboratory (AFRL). AFSIM was developed to

address analysis capability shortcomings in existing legacy simula-

tion environments as well as to provide an environment built with

moremodern programming paradigms inmind. AFSIM can simulate

missions from subsurface to space and across multiple levels of

model fidelity [51]. As AFSIM has been used by both the USN and

United States Air Force (USAF) to inform acquisition decisions and

model aircraft system behavior, we elected to use it to generate

evidence that may lead to certification of autonomous systems [52].

We propose the following scenario for analyzing the effects of

sensor error on the SA of an autonomous vehicle: An autonomous

UAV (wewill refer to it as the Bucket Fighter) is operating over hostile

territory. It is in a stationary orbit to provide intelligence, surveillance,

and reconnaissance (ISR) information to ground forces. The informa-

tion it provides is essential for the overall mission to be accomplished.

However, the Bucket Fighter can be considered a high-value airborne

asset (HVAA) that is unable to defend itself. As the platform is

considered HVAA there is a set range it is required to maintain from

threat aircraft. A fully qualified pilot is expected to take in the infor-

mation available to them (both from communications with other assets

and onboard systems) to determine when an aircraft reaches one of

these prebriefed limits. When a threat aircraft reaches a defined range,

the Bucket Fighter will be required to RETROGRADE (withdraw

from station in response to a threat, continue mission as able). Once

the threat is no longer a factor, the vehicle can RESET to its orbit.

During a RETROGRADE, the ISR platform can continue to complete

its assignedmission.When a threat aircraft reaches a defined range, the

Bucket Fighter will be required to SCRAM (egress for defensive or

survival reasons). If the UAV were to execute a SCRAM, it will no

longer be able to provide support for ground forces, as a RESET is not

authorized after a SCRAM. A description of these terms, and others

used by the DoD, can be found in Ref. [53].

For the sake of this hypothetical scenario the researchers set the

RETROGRADE and SCRAM ranges to 20 and 10 nautical miles

(nm). An autonomous UAV’s ability to accurately identity when a

threat aircraft has reached its RETROGRADE and SCRAM range is

critical for it to perform its mission. If it were to RETROGRADE or
SCRAM too early, it may lead to an unacceptable degradation to the
assigned mission (ISR support for ground forces). If it were to
RETROGRADE or SCRAM too late, it may lead to a situation where
a threat aircraft would engage the defenseless HVAA.

B. Experiment Factors (Variables)

Within the M&S environment, we installed two sensors on the
Bucket Fighter: a generic infrared search and track (IRST) and a
generic air-to-air radar. Both sensors were given an unlimited field of
view and had the ability to track the threat aircraft for the duration of
the simulation. In the M&S environment, we had the ability to apply
errors into each sensor in the form of a σ (standard deviation [SD])
value. The error can be applied to the azimuth, elevation, and range of
the track. Figure 3 is a pictorial of these parameters. It can be assumed
that the only factors (environmental, mechanical, or other) that can
cause degradation to the individual sensor can be illustrated by the
errors detailed above.
During the scenario, the M&S package generates a random num-

ber to determine where on the normal distribution to pull the error
value for each sensor component. This error shifts each time the
individual sensor performs a sweep. The errors are constant at each
point in the simulation of the same scenario to enable repeatable
results (i.e., at 20 nm [on every run of the simulation] the simulation
may pull a value of 0.73 × σ regardless of what the σ value is).
TheBucket Fighter has the ability to fuse the tracks provided by the

IRST and radar. This fused track is based not only on the raw sensor
data, but it also uses velocity measurements and any past detection to
build a predictable model for the track. This enables the autonomous
UAV tomore accurately track the target the longer it has been tracked
by the sensors. It can be assumed that the fused track would match
reality if there were zero error within the sensors. Figure 4 contains
two AFSIM screen captures from a test run from different angles
depicting the threat aircraft location based on the IRST (red), radar
(green), and fused track (white triangle). The threat aircraft is approx-
imately 20 nm west of the UAV [55].
For DOE we chose the factors to be azimuth error, elevation error,

and range error as resident in the radar and the IRST. This will give a
total of six factors in the experiment with one level each (six varia-
bles). For each of the six factors, we use the following null hypoth-
esis: No statistical significance can be found between the “error
value” (IRST/radar azimuth, elevation, range) and the error distance
(distance between the fused track and the threat aircraft).

C. Measures of Performance

We are attempting to measure the SA provided as sensors degrade.
Therefore, we elected to use error distance as the MOP in this
research. In particular we will measure the error distance at 20 and
10 nm (corresponding to our hypothetical RETROGRADE and
SCRAM range). Based on the errors inherent in the sensors (the six
error σ s), we hypothesized that we could provide a predictive
equation that would give the error distance at 20 and 10 nm. We will
use SME opinion (four senior naval officers who have extensive

Fig. 3 Graphical depiction of the three possible error parameters of the
sensors installed on the Bucket Fighter [54].

Fig. 4 Two AFSIM screen captures from a test run [55].
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experience in dealing with RETROGRADE and SCRAM situations)
to determine what error distance corresponds to inadequate SA to
make a decision normally reserved for qualified pilots.

D. Fused Error Distance as a Function of Sensor Error

With the assistance of researchers from AFRL (Dayton, OH) and
analysts from the Naval AirWarfare Center Aircraft Division (NAW-
CAD) (Patuxent River, MD) we adjusted a demonstration simulation
from the standard unclassified AFSIM training software to meet the
needs of our research. All output data from AFSIM used in this
research were approved for public release [55].
We started with the Bucket Fighter providing ISR information to

notional ground forces from a static location.We then elected to place
a threat aircraft 60 nm from the Bucket Fighter. Both platforms were
placed at 20,000 ft MSL and the threat aircraft tracked directly at the
Bucket Fighter at 300 knots. For this hypothetical scenario, it can be
assumed that the Bucket Fighter’s only method of building an air
picture (its SA of what is around it while airborne) is through its
onboard sensors (a generic IRST and generic radar). Figure 5 is a
screen capture depicting a top view from the start of the scenariowith
the Bucket Fighter in the east and the threat aircraft tracking inbound
from the west. We studied the effect of sensor error on error distance
(distance between the fused track and the actual location of the threat
aircraft) at 20 and 10 nm in an attempt to quantify the SA level of the
Bucket Fighter at critical decision points (RETROGRADE and
SCRAM range) to determine at which point the SA provided to the
Bucket Fighter was sufficient to make a sound aeronautical decision.

Equation (1) is the multiple regression model that explains the
relationship between Y (error distance/the independent variable) and
multiple XX values (the six error σ s/dependent variables): X1 �
IRST azimuth σ value, X2 � IRST elevation σ value, X3 � IRST
range σ value, X4 � radar azimuth σ value, X5 � radar elevation σ
value, and X6 � radar range σ value. The corresponding βx values
are the relativeweights of each variable, and β0 is the Y intercept. The
ϵ term represents the error that exists within the model that cannot be
accounted for and will drop out when we develop our predictive

equation (Ŷ). Table 1 summarizes the various terms in Eq. (1).

Y� β0�β1X1�β2X2�β3X3�β4X4�β5X5�β6X6� ϵ (1)

IV. Experimental Results and Analysis

In Sec. III we developed a multiple regression model where we
express the fused error distance as a function of the various sensor
errors in the sensor network. In Sec. IV.A we describe how we will
gather data at various error σ levels to characterize the system. In
Sec. IV.B we perform multiple variable regression analysis on the
data gathered in the M&S environment to populate the variables in
Eq. (1) at 20 and 10 nm. In Sec. IV.C we develop inequalities that
define sufficient SA for an autonomous vehicle to make a decision
that is currently reserved for qualified pilots.

A. Conduct of the Experiment

In an attempt to limit the scope of possible errors, and provide
useful data to analyze, we limited the error σ to between three and
seven (nm or deg). We programmed in the ability to introduce three
error variables into each of the sensors (azimuth [deg], elevation
[deg], and range [nm]) in the form of defining one σ for each variable.
For this research we varied the six variables between three, five, and
seven at the start of each test run and recorded the observed error
distance (distance between the fused track generated by the autono-
mous UAVand actual location of the threat aircraft) within the M&S
environment. By manually updating the six σ values with all 729
combinations between each run, we hope to provide enough data to
generate predictive equations through multiple variable regression
analysis. Equations (2) and (3) are the predictive equations (at 20 and
10 nm) we plan on population with the results of our regression
analysis. Table 2 summarizes the various terms in Eqs. (2) and (3).
The completed equations will be used to provide a quantitative
evaluation of an autonomous systems SA to complete a task currently
reserved for qualified pilots. Table 3 is a 10-run subset of the 729
combinations we plan on evaluating.

Ŷ20 � b0−20 � b1−20X1 � b2−20X2 � b3−20X3 � b4−20X4

� b5−20X5 � b6−20X6 (2)

Fig. 5 Screen capture from the start of a test run. The threat aircraft is in the west and the Bucket Fighter (UAV) is in the east [55].

Table 1 Summary of the terms in the
multiple regression model [Eq. (1)]

Term Definition

Y Error distance/independent variable

X1 IRST azimuth σ value

X2 IRST elevation σ value

X3 IRST range σ value

X4 Radar azimuth σ value

X5 Radar elevation σ value

X6 Radar range σ value

β0 Y intercept

β1 Weight of the X1 variable

β2 Weight of the X2 variable

β3 Weight of the X3 variable

β4 Weight of the X4 variable

β5 Weight of the X5 variable

β6 Weight of the X6 variable

ε Error that exists within the model
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Ŷ10 � b0−10 � b1−10X1 � b2−10X2 � b3−10X3 � b4−10X4

� b5−10X5 � b6−10X6 (3)

B. Analysis of the Data

As discussed in Sec. IV.A, we planned on evaluating 729 different

combinations of the six variables (error σ s). Table 4 is a subset of 10

(the same 10 as Table 3) of the runs with the observed error distance
(measured in meters) at 20 and 10 nm.
We then used multiple variable regression analysis resident in

Microsoft Excel to preform regression analysis on the 729 data points
to determine the effects each independent variable (the six σ values)
has on the two dependent variables (error distance at 20 and 10 nm).

The 20 nm data adjusted R2 value (indicates the percentage of the
variance in the dependent variable that the independent variables

explain collectively) was 0.822, and the 10 nm adjustedR2 valuewas

0.818.R2 describes levels of predictive accuracy with 0.75, 0.50, and
0.25, respectively, describing substantial, moderate, or weak [56].
The analysis of variation (ANOVA) significanceF valuewas 6.831E-
267 for 20, and 8.674E-263 for 10 nm (both of which show an
extremely high statistical significance for the respective model).
Table 5 details the relative coefficients for the predictive equation
and the individual p values. All of the p values are well below 0.05.
Therefore, we must reject the six null hypotheses as there is a
significant relationship between each sensor error value and the fused
track error distance.
Equations (4) and (5) are predictive equations (Ŷ) that depict an

anticipated fused error distance (dependent variable) based on the
various error σ s (independent variables) internal to the system at 20
and 10 nm, respectively (X1 � IRST azimuth σ value, X2 � IRST
elevation σ value, X3 � IRST range σ value, X4 � radar azimuth σ
value, X5 � radar elevation σ value, X6 � radar range σ value). The
corresponding bX values are the relativeweights of each variable, and
b0 is the Y intercept from Table 5.

Ŷ20 � −528.337� 57.427X1 � 54.105X2 � 4.653X3 � 54.649X4

� 61.384X5 − 10.208X6 (4)

Ŷ10 � −441.693� 49.665X1 � 46.854X2 − 4.607X3 � 47.578X4

� 53.085X5 − 15.638X6 (5)

Next, we used a random number generator (integers between three
and seven) to populated 25 test points for the evaluation of the
predictive equations. We elected to limit out evaluation of the regres-
sion analysis to σ s between three and seven, as that was the pop-
ulation of the data that we used for the regression analysis. Table 6
details these test points and their observed error distances at 20 and
10 nm. Table 7 then compares the predicted error distance and
observed error distance from the M&S environment. The predicative
equations generated error distances across the 25 pointswith less than
a 10% average error at both 20 and 10 nm (distance between the
observed range and fused track).

C. DOE Conclusions

Based on this output and SME (four senior naval officers who have
extensive experience in dealing with RETROGRADE and SCRAM
situations) opinion, we determined that if the system could generate
an error distance less than 800 m at 20 miles, and 400 m at 10 miles,
then the SA provided by its sensors is accurate enough for it to make

Table 3 Ten of the 729 data points

Run
no.

Y20

(m)
Y10

(m)
X1

(deg)
X2

(deg)
X3

(nm)
X4

(deg)
X5

(deg)
X6

(nm)

50 3 3 5 7 5 5
141 3 5 7 3 5 7
248 5 3 3 3 5 5
339 5 5 3 5 5 7
397 5 5 7 7 3 3
469 5 7 7 5 3 3
554 7 3 7 5 5 5
594 7 5 3 7 7 7
656 7 7 3 3 7 5
723 7 7 7 7 3 7

Y20 is the 20 nm error distance in meters. Y10 is the 10 nm error distance in meters. X1 is

the value of one σ error in IRSTazimuth in degrees.X2 is the value of one σ error in IRST
elevation in degrees.X3 is the value of one σ error in IRST range in nm.X4 is the value of

one σ error in radar azimuth in degrees.X5 is the value of one σ error in radar elevation in
degrees. X6 is the value of one σ error in radar range in nm.

Table 4 Ten of the 729 data points

Run no.

Y20

(m)
Y10

(m)
X1

(deg)
X2

(deg)
X3

(nm)
X4

(deg)
X5

(deg)
X6

(nm)

50 467.9 342.9 3 3 5 7 5 5
141 325.8 181.5 3 5 7 3 5 7
248 331.2 243.3 5 3 3 3 5 5
339 496.7 381.7 5 5 3 5 5 7
397 617.9 481.6 5 5 7 7 3 3
469 434.0 320.5 5 7 7 5 3 3
554 567.3 412.1 7 3 7 5 5 5
594 818.1 600.9 7 5 3 7 7 7
656 932.4 765.5 7 7 3 3 7 5
723 813.4 615 7 7 7 7 3 7

Y20 is the 20 nm error distance in meters. Y10 is the 10 nm error distance in meters. X1 is

the value of one σ error in IRSTazimuth in degrees.X2 is the value of one σ error in IRST
elevation in degrees.X3 is the value of one σ error in IRST range in nm.X4 is the value of

one σ error in radar azimuth in degrees.X5 is the value of one σ error in radar elevation in
degrees. X6 is the value of one σ error in radar range in nm.

Table 2 Summary of the terms that are in the
predictive equations [Eqs. (2) and (3)]

Term Definition

Ŷ20
Predictive error value at 20 nm

Ŷ10
Predictive error value at 10 nm

X1 IRST azimuth σ value

X2 IRST elevation σ value

X3 IRST range σ value

X4 Radar azimuth σ value

X5 Radar elevation σ value

X6 Radar range σ value

b0−x Y intercept for the x equation (20 or 10 nm)

b1−x X1 variable in the x equation (20 or 10 nm)

b2−x X2 variable in the x equation (20 or 10 nm)

b3−x X3 variable in the x equation (20 or 10 nm)

b4−x X4 variable in the x equation (20 or 10 nm)

b5−x X5 variable in the x equation (20 or 10 nm)

b6−x X6 variable in the x equation (20 or 10 nm)

Table 5 Twenty and 10 nm regression data obtained through
Microsoft Excel multiple regression analysis

Twenty-mile regression data Ten-mile regression data

Ŷ20 b term Coefficient p Ŷ10b term Coefficient p

b0−20 −528.337 4.02E − 80 b0−10 −441.693 5.90E − 73

b1−20 57.427 3.80E − 123 b1−10 49.665 9.80E − 119

b2−20 54.105 2.31E − 113 b2−10 46.854 2.10E − 109

b3−20 4.653 1.91E − 02 b3−10 −4.607 9.01E − 03

b4−20 54.649 5.75E − 115 b4−10 47.578 8.30E − 112

b5−20 61.384 9.58E − 135 b5−10 53.085 4.70E − 130

b6−20 −10.208 3.31E − 07 b6−10 −15.638 4.84E − 18
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the RETROGRADE or SCRAM decision normally reserved for

qualified pilots. As the error distance from the predictive equation

is within 10% of the observed error distance, we used 727 m for

20 nm (worst case: 727� �727 � :1� � 799.6), and 363 for 10 nm

(worst case: 363� �363 � :1� � 399.3). Equations (4) and (5) were
then translated to be inequalities, Eqs. (6) and (7). When Eq. (6) is

true, the SA provided by the onboard sensors is sufficient to make a
soundRETROGRADEdecision at 20miles.When Eq. (7) is true, the
SA provided by the onboard sensors is sufficient to make a sound
SCRAM decision. If Eq. (6) or Eq. (7) were to be false, the SA
provided by the onboard sensors is not adequate for making a sound
RETROGRADE or SCRAM decision.

727 > −528.337� 57.427X1 � 54.105X2 � 4.653X3 � 54.649X4

� 61.384X5 � −10.208X6 (6)

363 > −441.693� 49.665X1 � 46.854X2 − 4.607X3 � 47.578X4

� 53.085X5 − 15.638X6 (7)

V. Conclusions

This paper demonstrated that a relationship (objective measure)
can be defined for autonomous vehicle SA (subjective end) and
sensor degradation. Section II details how defining an objective
measure for a subjective end is not a new idea within the flight test
community and highlighted inadequate vehicle SA in an autonomous
technology demonstration vehicle. Sections III and IV dealt with
M&S of a hypothetical simplified sensor network to define the
relationship. Future work within AFSIM that uses multiple Monte
Carlo runs with random seed values for where on the σ curve to pull
the error value on each run could build amore accurate error equation.
Additionally, future work focusing on defining this relationship on a
mature system during flight test would give vehicle designers the
ability to program a vehicle to complete tasks currently reserved for
qualified pilots under off-nominal conditions and eventually obtain a
safety of flight certification.
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