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Control surface failures are one of the most common faults in flight on Uncrewed Aerial
Vehicles (UAVs). Most fault detection methods focus on control and servo loops analysis. In this
paper, two heuristic-based algorithms were developed for fault detection in stuck control surfaces
on UAVs, both are computationally inexpensive plus no aerodynamic model is required. The
first called Mahalanobis Distance Fault Detection Algorithm (MDFDA) uses said measurement
to calculate the separation of state vector with respect to the average for nominal flight. The
second called Fuzzy Logic Fault Detection Algorithm (FLFDA) implements this approach
using state threshold values based on nominal flight limits. Fault isolation is possible with this
algorithm. Overall, MDFDA performed better and faster, FLFDA performed better on faults
larger than ±10 degrees, and both methods were the most successful in detecting aileron failures.

I. Nomenclature

𝐶𝑜𝑒 𝑓 𝑓𝐶𝑆𝑎𝑙𝑙 = Sum of all possible coefficients in control surface
𝐶𝑆𝐼𝐷 = Control surface ID
𝐶𝑜𝑒 𝑓 𝑓 𝑗 = Coefficient of state j in control surface
𝐶𝑆 = Control surface
𝐶𝑆𝑙𝑖𝑚 = Control surface limit
𝐹 = System matrix
𝐺 = Control matrix
ℎ = Relative altitude
𝑀𝐷 = Mahalanobis distance
𝑝 = Roll angle rate
¤𝑝 = Roll angle acceleration
𝑞 = Pitch angle rate
¤𝑞 = Pitch angle acceleration
𝑟 = Yaw angle rate
¤𝑟 = Yaw angle acceleration
𝑆 = Covariance matrix
𝑣𝑥 = Velocity in the x axis
𝑣𝑦 = Velocity in the y axis
𝑣𝑧 = Velocity in the z axis
−→𝑥 = State vector
−→¤𝑥 = State dynamics vector
−−−−−→
𝑥𝐹𝐿 (𝑡) = State vector for fuzzy logic
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−−−−−−→
𝑥𝑀𝐷 (𝑡) = State vector for Mahalanobis distance
𝛿 = Input vector
−−−→
𝜇(𝑡) = State vector averages
𝜓 = Yaw angle
𝜙 = Roll angle
𝜃 = Pitch angle

II. Introduction

The increased usage of Uncrewed Aerial Vehicles (UAVs) for civilian and military operations call for a well suited
hazard mitigation plan. According to Williams [1] who compared accidents in 5 different UAVs, around 33% to

67% of incidents are caused by an aircraft malfunction. These could have been prevented with a good mitigation plan.
A fast fault detection in UAVs is the first step to this plan, this could be definitive for the conservation of the

aircraft as well as for people surrounding the flight area. Different faults in UAVs are found in motion sensors, motors,
communication links with ground control, Global Positioning System (GPS), and additional sensors like LIDAR,
cameras, or servos. This paper focuses on servo/actuator fault. There are different categories in servo failures: noise,
overheating or electrical issues. However, these malfunctions of the servo lead to three different commanded vs real
(physical) faults.

The first one is a weak signal servo which makes the amplitude of real deflection be less than the commanded. The
second is an oscillating servo that is uncontrollable. The third one is a stuck servo that can not mechanically move. For
the purpose of this paper, when referring to a control surface fault, said fault is a stuck servo. If the fault can be isolated
into the corresponding control surface, a better mitigation plan can be developed.

Fault detection in UAVs could be expensive and difficult to implement as, generally, a control system must be
designed to measure the difference in commanded vs actual signals. These methods are not fast enough because of
their complexity. An example of these is the work of Zhang et al. [2] where a Kalman Filter is used to measure the
residual sequences of each actuator signals and with this, detect and isolate faults. Another example is from Gheorghe
et al.[3] where a servo loop model was developed to monitor the actuator performance, but again, a servo model has to
be created. Some other authors Cork and Walker [4] for example, have created algorithms that used the knowledge
of the nonlinear aerodynamic model, however, to obtain the coefficients of a nonlinear model there is a need for a
system identification process which takes a lot of flight testing or wind tunnel tests. Heredia et al.,[5] developed a fault
detection algorithm that combines GPS and vision sensors, but this could be expensive as well as add weight to the
aircraft. Machine Learning algorithms are also being implemented in fault detection; however, it needs a vast flight
database that can take months to gather. Algorithms based on heuristics were used in the past, like Douglas and Speyer
[6] were the rule method was applied, although fault isolation was not reached at the time.

Research presented in this work, focused on creating Heuristics based algorithms that can detect and isolate a fault
in stuck control surfaces i.e., aileron, rudder, and elevator. Section II defines the algorithms developed in this study.
Section III contains the implementation for testing these algorithms. Section IV is the results from algorithms applied to
flight test data. Section V talks about the conclusions derived from the experiments.

III. Algorithms
Two algorithms were formulated to accomplish this. The first uses the Mahalanobis Distance inspired by Lin et al.

[7] called the Mahalanobis Distance Fault Detection Algorithm (MDFDA). The second based on Fuzzy Logic called
Fuzzy Logic Fault Detection Algorithm (FLFDA).

A. MDFDA
Mahalanobis Distance is the value in standard deviation units (std units) that measure the distance from a point

on a multi-dimensional space (state space in this case) to its covariance and averages. In MDFDA, MD is used to
get a distance from the corresponding state vector to the distribution of the nominal flight, created with averages of
each state, and a covariance matrix that describes the relationship between the states. MD was first used on Aircraft
anomaly detection in 2001 by Brotherton [8]. Later it was used on UAVs by Lin et al. [7] for anomaly detection on
the entire aircraft system. The main difference between this approach and MDFDA is the amount of states that are
being considered. In this study we are only focusing on anomalies in control surfaces which means states like engine
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temperature, mass, sensor readings, etc. will not be included when calculating the MD.

𝑀𝐷 (
−−−−−−→
𝑥𝑀𝐷 (𝑡)) =

√︃
(
−−−−−−→
𝑥𝑀𝐷 (𝑡) −

−−−→
𝜇(𝑡))𝑇𝑆−1 (

−−−−−−→
𝑥𝑀𝐷 (𝑡) −

−−−→
𝜇(𝑡)) (1)

The MD is calculated using Equation 1. Where
−−−−−−→
𝑥𝑀𝐷 (𝑡) is the state vector at time 𝑡,

−−−→
𝜇(𝑡) is the vector corresponding

to the state averages from start to time 𝑡, and 𝑆 is the covariance Matrix.
The states composing

−−−−−−→
𝑥𝑀𝐷 (𝑡) are altitude (ℎ), the Euler angles (i.e., roll (𝜙), pitch (𝜃),and yaw (𝜓)), the angle rates

(roll rate (𝑝), pitch rate (𝑞), and yaw rate (𝑟)), angle accelerations (roll acceleration ( ¤𝑝), pitch acceleration ( ¤𝑞), and
yaw acceleration ( ¤𝑟)), and components of velocity (𝑣𝑥 , 𝑣𝑦 , and 𝑣𝑥). These states are used to calculate

−−→
𝑥(𝑡), and the

average of their values over time is
−−−→
𝜇(𝑡). 𝑆 is defined by gathering data from different time steps in a nominal flight, and

calculating its covariance. This implies 𝑆 is a 13x13 matrix. The first step to define a covariance matrix is to find a
13x13 state matrix. The state vectors for this can be collected over one nominal flight in 13 different time steps. Another
option is to select 13 state vectors from different flights in a nominal stage, which means all values had to be stable
and should not be affected by a fault. For this study, the latest was used, permitting the state matrix to have data from
different days with varying weathers. When the aircraft turns, yaw and roll changes drastically and the MD will increase.
For this, adding state vectors captured during turning is highly recommended to add this maneuver into the state matrix.

Algorithm 1 is the pseudo code for MDFDA. Line 6 contains a check point that the algorithm will not start below
altitude (ℎ) of 20 meters. This is to eliminate possible false positives when the aircraft is in take off or landing stage. In
line 10, the MD is compared to the threshold value 𝑀𝐷𝑙𝑖𝑚 that, after data analysis, was set to 1000.

Algorithm 1 MDFDA(𝑀𝐷𝑙𝑖𝑚, 𝑆
−1, 𝑡 𝑓 𝑖𝑛𝑎𝑙)

𝑡𝑜 ← 0
for 𝑡 ←from 𝑡𝑜 to 𝑡 𝑓 𝑖𝑛𝑎𝑙 do
−−−→𝑥𝑀𝐷 ← state vector at time t
−→𝜇 ← vector with state averages from 𝑡𝑜 to 𝑡

5: ℎ← 𝑥𝑀𝐷 (1) first state in −−−→𝑥𝑀𝐷

if ℎ(𝑡) < 20 then
𝐹𝑎𝑢𝑙𝑡𝑡 ← 0 i.e. the aircraft is not flying

else
𝑀𝐷𝑡 ←

√︃
(−−−→𝑥𝑀𝐷 − −→𝜇 )𝑇𝑆−1 (−−−→𝑥𝑀𝐷 − −→𝜇 )

10: if 𝑀𝐷𝑡 > 𝑀𝐷𝑙𝑖𝑚 then
𝐹𝑎𝑢𝑙𝑡𝑡 ← 1

end if
end if

end for

B. FLFDA
The concept of Fuzzy Logic was created by Zadeh in the 1960s. See Ref.[9] for an article on the history of the

acceptance of fuzzy logic in science. It is defined as the notion that there are more than binary truths. In a mathematical
way, there is a scale where 0 is not true and 1 is the truth. In this work this can be called certainty, where 0 (or 0%)
is certainly that there is not a fault on the aircraft, and 1 (or 100%) reflects that most certainty there is a fault on the
aircraft. The states used in this application (

−−−−−→
𝑥𝐹𝐿 (𝑡) are altitude ℎ, velocity in z-axis 𝑣𝑧 , euler angles (𝜙, 𝜃, and 𝜓), and

angular rates (𝑝, 𝑞, and 𝑟). In order to calculate the certainties, parameters must be delimited and weights of impact of
each state in all control surfaces should be determined. The weights each state holds in the certainty that there is a fault
in each actuator are the coefficients in Table 1, which are use to calculate certainties for all faults using equation 2.

Algorithm 2 is the pseudo code for FLFDA which describes its procedure in detail. At each time step: first, three
variables are set to be determined (𝐹𝑎𝑢𝑙𝑡𝑒𝑙𝑒𝑣𝑎𝑡𝑜𝑟 , 𝐹𝑎𝑢𝑙𝑡𝑟𝑢𝑑𝑑𝑒𝑟 , and 𝐹𝑎𝑢𝑙𝑡𝑎𝑖𝑙𝑒𝑟𝑜𝑛), the code starts testing the conditions
in Table 1 and assigning the coefficient values to the designated fault variable. After all conditions for each control
surface are compared, the certainty of each is calculated as stated in Eq. 2 where 𝑗 stands for the control surface ID. All
certainties (𝐴𝑖𝑙𝑒𝑟𝑜𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡 𝑦 , 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡 𝑦 , and 𝑅𝑢𝑑𝑑𝑒𝑟𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡 𝑦) are then compared and the largest one is set to
be the predominant fault at that time step sending an output signal with the control surface ID of 1 for aileron fault, 2 for
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Table 1 FLFDA limit values and coefficients

Control Surface Conditions Coefficient

Elevator

|𝜃| > 20 deg 3
𝑞 > 50 deg/s 3
𝑞 < -40 deg/s 3
𝑣𝑧 > 10 m/s 1

Rudder

|𝜙| > 30 deg 2
|𝑟 | > 50 deg/s 3
|𝑞| > 50 deg/s 1
𝑣𝑧 > 20 m/s 1

Ailerons

|𝜙| > 50 deg 2
𝑣𝑧 > 10 m/s 1

|𝑝| > 50 deg/s 3
𝜃 < -15 deg 1

elevator, and 3 for rudder. However, if the certainty is below 40%, the fault is set to zero as that is not enough certainty
to confirm a fault. In addition to that, as with the MDFDA, if the altitude is below 20 meters the plane is not flying at an
altitude where faults were injected, and the fault is set to zero. An example of how this works is if 𝜃 is greater than 20
degrees, and 𝑣𝑧 is higher than 10 m/s. The certainty for elevator fault is calculated adding the corresponding coefficients
and dividing it by the sum of all coefficients collected from Table 1: (3 + 1)/9, the certainty is 44.4%. As this certainty
is greater than 40%, the algorithm will signal an elevator fault (i.e. 2) with a certainty of 44.4%.

𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑗 =

∑
𝐶𝑜𝑒 𝑓 𝑓𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒∑

𝐶𝑜𝑒 𝑓 𝑓 𝑗𝑎𝑙𝑙
(2)

Algorithm 2 FLFDA(−−→𝑥𝐹𝐿 , 𝑡)
for Every 𝑡 do

for Every 𝑥𝐹𝐿 do
if 𝑥𝐹𝐿𝑖

> 𝐶𝑆𝑙𝑖𝑚𝑖𝑡 then
𝐹𝑎𝑢𝑙𝑡𝐶𝑆 ← 𝐹𝑎𝑢𝑙𝑡𝐶𝑆 + 𝐶𝑜𝑒 𝑓 𝑓 𝑗 (Fault in control surface is the addition of the applicable coefficients)

5: end if
end for
for Every 𝐹𝑎𝑢𝑙𝑡𝐶𝑆 do

𝐶𝑆𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡 𝑦 ← 𝐹𝑎𝑢𝑙𝑡𝐶𝑆/
∑
𝐶𝑜𝑒 𝑓 𝑓𝐶𝑆𝑎𝑙𝑙

end for
10: 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ← Greater 𝐶𝑆𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡 𝑦

𝐹𝑎𝑢𝑙𝑡 ← 𝐶𝑆𝐼𝐷
if 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 < 0.4 then

𝐹𝑎𝑢𝑙𝑡 ← 0
end if

15: if ℎ < 20 then
𝐹𝑎𝑢𝑙𝑡 ← 0

end if
end for

IV. Implementation
Heuristic based algorithms need a data set to be configured. That data was used to create the covariance matrix in

MDFDA, and to select the limit values specific to this aircraft for FLFDA. This data was collected using a Carbon-Z
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Cub model airplane with wing span of 2.1 m. Fig. 1, which was equipped with the following electronics:
• Baseline avionics
• Primary and secondary receivers
• 4 channel multiplexer
• Fault injection board
• Raspberry Pi for data collection
• Smart G2 LiPo Battery
• S3 LiPo Battery

Fig. 1 Instrumented Carbon-Z Cub for flight testing

Faults were injected on right and left ailerons (decoupled), elevators, and rudder over a range of degrees. Only one
control surface fault was applied per flight. All flights were autonomous and controlled by the autopilot.

A. Autopilot
The Pixhawk was the flight controller used for this project, this was connected to the actuators, motors, telemetry,

and speed sensors. A multiplexer was used to change from manual mode (primary receiver) where the pilot was in
control, to mission mode (secondary), where the autopilot was controlling the aircraft and following the mission plan
designed with ground station software. While on a flight test, the pilot would take off, stabilize the aircraft and then
switch to mission mode. After about 5 to 7 minutes which was a typical flight duration, the pilot would regain control
by switching to manual mode and land the aircraft. The software used as ground station was QGroundControl, where
a flight plan was determined beforehand in a specific area. The flight plan was a waypoint multi-point survey. The
data captured by the autopilot had a ".ulg"extention, and was used to visualize in PX4 flight review, as shown in Fig. 2
with the flight path. Euler angles, angle rates, thrust, altitude from barometer, GPS, position, velocities, accelerations,
ground speed, accuracy of position, voltage, temperature, magnetic field, and satellites are recorded at about 10 samples
per second, and they are available download after each flight.

B. Fault Injection
An Arduino board was used to simulate a fault, by cutting the signal from autopilot to actuators, and replacing that by

sending the degree selected to the control surface. Algorithm 3 shows the code for fault injection in Arduino. For flight
tests, the Fault IDs were 1 for Left Aileron, 2 for Right Aileron, 3 for Rudder, and 4 for Elevator (please note that these
are different from the fault detection IDs in FLFDA). An Arduino board was installed between the Pixhawk and servo
motors. The Arduino was then left to pass the signal through except when the channel was changed using a switch in the
radio transmitter. Said switch can be in three positions, where the first one was set to no-fault, the second position to the
first degree in

−−−−−−−−→
𝐹𝑎𝑢𝑙𝑡𝑑𝑒𝑔, and the third position to the second degree of control surface deflection. The code was adjusted

before each flight, only one control surface and two different surface deflection degrees were tested on each flight test.
For ailerons and elevator the angle offset was of about 5 deg. However, for a negative rudder fault i.e., the trailing
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Fig. 2 Flight path seen from PX4

edge of the rudder is deflected towards the left wing, the offset was of about 10 deg. This means that in reality, although
the signal is set to -25 deg, physically the rudder is deflected about -15 deg.

C. Data Collection
There was a need for an on-board computer to combine data from autopilot and Arduino to have a file with both

flight data and fault injection data. A Raspberry Pi (RPi) was selected for this purpose, where an S3 LiPo battery was
added to power the RPi. Through a USB, the RPi powered the Arduino and imported the fault data (i.e., 𝐹𝑎𝑢𝑙𝑡𝐼𝐷
and 𝐹𝑎𝑢𝑙𝑡𝑑𝑒𝑔). Another USB connection was installed from RPi to Pixhawk. From this, the flight data (i.e., altitude,
attitude, GPS, etc.) was imported through MAVLink. The RPi data acquisition code combined both data sets to a single
".json" file choosing the lower incoming frequency to save them into a micro SD card.

Algorithm 3 Fault Injection(𝐹𝑎𝑢𝑙𝑡𝐼𝐷 ,
−−−−−−−−→
𝐹𝑎𝑢𝑙𝑡𝑑𝑒𝑔)

if 𝐹𝑎𝑢𝑙𝑡𝐼𝐷 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑆𝑢𝑟 𝑓 𝑎𝑐𝑒𝐼𝐷 then
Cut signal from PixHawk to 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑆𝑢𝑟 𝑓 𝑎𝑐𝑒

𝛿𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑆𝑢𝑟 𝑓 𝑎𝑐𝑒 ← 𝐹𝑎𝑢𝑙𝑡𝑑𝑒𝑔
end if

D. Data Visualization and Analysis
Data from a total of 23 flights was collected in a span of a year. An analysis of the flights was done to find critical

state values for FLFDA and to select a maximum "nominal" MD for the MDFDA. The data from ".json" file was
analyzed in MATLAB. Both Algorithms were coded in Simulink, where a true real-time simulation was done signaling
the inputs in time steps of 𝑑𝑡 ≈ 0.06𝑠. Fig.3 show the Euler angles and angular rates through one flight with rudder
fault at -20 deg and 20 deg. Notice that data from 𝜙 does not stay within the conventional range of ±180 deg, this is to
prevent the algorithms to detect a fault while turning. The times in which the faults are inserted are shown in Fig.4.

All states are affected by all inputs. However, for FLFDA, after looking at the linear dynamics for a fixed wing
airplane 3, each control surface was paired with the states that they affected the most. In Eq. 3, −→¤𝑥 are the state dynamics,
−→𝑥 the states, and −→𝛿 is the vector containing the input values i.e., throttle, elevators, ailerons, and rudder. Usually −→𝛿
includes only throttle, elevators and longitudinal stick, but because the tests were controlled by the autopilot, the inputs
were actually the signals from the autopilot to each servo and the motor. The coefficients where then selected for each
state anomaly depending on how much the this data changed in comparison to the other faults. After that, the behavior
of each state was compared during a fault and normal flight, searching for spikes when the fault was injected. An
example of this is at Fig. 3 and 4, where at second 95 a negative 25 deg fault was injected on rudder. 𝜃, 𝜙, 𝑞, and 𝑟 have
pikes, and the same happens at the other faults. From analyzing these spikes throughout all flight data, the conditions in
Table 1 were set for each fault.
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Fig. 3 Data from flight test with rudder fault

Fig. 4 Rudder faults applied during flight with deflection signal

−→¤𝑥 = 𝐹−→𝑥 + 𝐺−→𝛿 (3)

For MDFDA, after the state matrix was created, and the covariance and inverse covariance matrix, tests were
implemented in all flights data. This, in order to select a threshold value for the absolute MD that was the limit of
nominal flight. In Section III, this value was set as 1000.

V. Results
Statistics for both algorithms were computed using F-1 and Matthews Correlation Coefficient. F-1 score is the

harmonic mean that combine the precision and the recalling of the model calculated via false positives, false negative,
true positives, and true negatives. Mathews Correlation Coefficient (MCC in tables) uses the same variables as F-1
score, but MCC is used to measure the difference between the predicted and actual values of a model. Both algorithms
send the output as impulse signals because of this, a fault was detected if there was an output pulse in the time where the
fault was active. For FLFDA this is only the signal corresponding to the actual 𝐹𝑎𝑢𝑙𝑡𝐼𝐷 is detected. For example, if the
real fault was on rudder, only the 𝐹𝑎𝑢𝑙𝑡𝐼𝐷 3 was considered to detect the fault. Often times faults were tested on the
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ground while data was being recorded. To account for this, a filter was added to the algorithms to erase the injected
faults signal if altitude was less than 20 meters, which is a confidence interval of when. This was done specifically for
the code running statistics, so the faults on the ground do not affect false negative rate.

Fig. 5 MDFDA for Rudder fault at ± 25 deg. First scope shows real fault, middle scope the detected fault, and
last one shows MD at each time step

Fig. 5 shows MDFDA output on the same flight the data in Fig.3 and 4 were collected, with rudder fault at ± 25. The
value at the bottom scope is the MD at each time step, in the middle scope is the fault detected by the algorithm, and on
the top is the actual fault. Table 2 contains the statistics for MDFDA such as average False Negative (FN) rate (%), False
Positive (FP) rate(%), F-1 score, MCC, detection time (sec) that is the time it takes for the fault to be detected once it is
present, and detection rate (%) from all 15 flights, flights with aileron faults (7 flights), rudder faults (5), and elevator
faults (3). As well as two other categories for faults with deflection smaller or equal than 10deg (7), and greater than
10deg (11). It is worth to note that there were three flights in both categories, with deflections of +15deg and -5 deg.

Table 2 MDFDA Statistics

FP FN F-1 Score MCC Detection Time Detection
Rate (%) Rate (%) (sec) Rate (%)

Overall 1 10 0.8622 0.8628 5.44 78
Aileron Faults 1 7 0.9489 0.927 2.91 90
Rudder Faults 1 2 0.9762 0.9687 4.68 86
Elevator Faults 0 34 0.7574 0.7708 14.45 62

Faults smaller than |10deg| 1 18 0.8723 0.8702 10.7 78
Faults greater than |10deg| 1 11 0.9125 0.9009 2.98 82

Fig.6 shows the FLFDA output for that same flight with ± 25 deg fault in rudder. The first scope shows the degree
and the time in which faults were injected. The last scope is the higher certainty for each time step. Recall Algorithm 2,
where the the three certainties (between 0 and 1) are calculated at each time step, and the one with higher value is the
predominant. That certainty is plotted last in Fig.6. If the value reaches higher than 0.4, the fault ID will appear in the
middle plot (3 for rudder, 2 for elevator, and 1 for ailerons). It is worth mentioning that there are times where there is
zero probability the aircraft is experiencing actuator fault, which is showed at times in scope 3. Table 3 contains the
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statistics of FLFDA (FP, FN, F-1 Score, MCC, Detection Time, and Detection Rate) for all flight tests, aileron, rudder
and elevator faults separately, small degree fault and large degree faults.

Fig. 6 FLFDA for Rudder fault at ± 25 deg. First scope shows real fault, middle scope the detected fault ID,
and last one shows certainty at each time step

Table 3 FLFDA Statistics

FP FN F-1 Score MCC Detection Time Detection
Rate (%) Rate (%) (sec) Rate (%)

Overall 8 26 0.6929 0.69112 14.13 64
Aileron Faults 2 9 0.9022 0.8734 8.4326 90
Rudder Faults 7 30 0.75472 0.67154 4.367 62
Elevator Faults 6 12 0.8695 0.8212 6.78 79

Faults smaller than |10deg| 4 19 0.8510 0.7973 9.832 72
Faults greater than |10deg| 5 30 0.7692 0.6924 5.2646 87

MDFDA was proved to be more effective overall, with a detection rate of 78%, F-1 score of 0.8622, and a MCC of
0.8628. It was faster to detect faults greater than 10 deg, than smaller, which aligns with the effects a larger deflection
degree. MDFDA have a higher detection rate in elevators with 90%, rudder comes next with 86% detection rate and
elevator faults has only 62% detection rate.

FLFDA did worse overall, only detecting 64% overall it also is slower to detect faults. However, it detected 90%
of aileron faults, rudder and elevator faults detected 62%, and 79% of faults respectively. FLFDA performed better
while detecting larger degree faults in comparison with smaller degree faults. In the case of FLFDA, the statistics were
calculated only taking into account when the ID of the detected fault matched the injected fault. This is to say that if the
algorithm detected an elevator fault (ID equals to 2), when the fault injected was rudder fault (ID, 3), then the algorithm
failed to identify the actual fault leaving the code to indicate the fault was not detected.

With FLFDA, the algorithm was able to detect a fault exactly when it was switched in and when it was switched out,
although it may not be the same ID that the fault injected. This is interesting to discuss further, this happens because
the algorithm is detecting the change in state. When the fault is injected via the radio transmitter, the affected control
surface servo moves with torque of about 65 oz/in and breaks the equilibrium of the aircraft. The UAV tends to oscillate
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for the abrupt movement, considering the faults are switched in at straight and leveled flight. The same occurs when the
fault is disabled and the servo jumps back to the deflection the autopilot is commanding.

VI. Conclusion
Mahalanobis Distance Fault Detection Algorithm was found to be more effective in both detection rate and time

with 78% and 5.44 seconds with a F-1 score of 0.8622. It was proved that this standard deviation measurement works
for detecting control surfaces anomalies. The Fuzzy Logic Fault Detection Algorithm has higher detection time and
a lower detection rate 14.13 seconds and 64%, but it predicts the faulty control surface with an F-1 score of 0.692.
Both algorithms showed better results in aileron faults (90% of detection rate). This could be caused by the offset
in servo angles discussed in Section IV. In future work, a combination of both algorithms appears to be promising.
Using MDFDA to detect anomalies, and FLFDA to identify the control surface, and deploy the hazard mitigation plan
accordingly. In summary, this study demostrated:

• Mahalanobis distance has a higher detection rate in stuck control surfaces.
• Fuzzy Logic has a potential in isolating faults in UAVs and it’s worth to keep developing this idea.
• Both algorithms have a higher detection rate in aileron faults 90% for both.
• A combination of both algorithms would be beneficial for high detection rate and lower detection time with fault

isolation.
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