
Received September 8, 2020, accepted September 23, 2020, date of publication October 5, 2020, date of current version October 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3028751

Metareasoning Structures, Problems, and Modes
for Multiagent Systems: A Survey
SAMUEL T. LANGLOIS 1, OGHENETEKEVWE AKORODA1, (Member, IEEE),
ESTEFANY CARRILLO 2, (Member, IEEE), JEFFREY W. HERRMANN 3,
SHAPOUR AZARM3, HUAN XU 2, (Member, IEEE),
AND MICHAEL OTTE 2, (Member, IEEE)
1Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
2Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
3Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA

Corresponding author: Samuel T. Langlois (slangloi@umd.edu)

This work was supported by the Air Force Research Laboratory (AFRL) under Grant FA8750-18-2-0114.

ABSTRACT Autonomous multiagent systems can be used in different domains such as agriculture, search
and rescue, and fire protection because they can accomplish large missions more quickly and robustly by
dividing them into separate tasks. Using multiple agents introduces additional complexity, which makes
autonomous reasoning and decision making more challenging, however. Because agents such as ground
robots, unmanned air vehicles, and autonomous underwater vehicles may have limited computational
resources, they may need computationally efficient yet powerful reasoning algorithms (decision-making
processes that perform deliberation and means-end reasoning). Metareasoning, which is reasoning about
these reasoning algorithms, offers a way to tackle these challenges by monitoring and controlling reasoning
algorithms to improve agent and system performance. Although metareasoning approaches for individual
computational agents have been studied, no survey of metareasoning in multiagent systems (MAS) has yet
appeared. This survey fills the existing gap by discussing the multiagent metareasoning approaches that
have been studied in the literature. It identifies metareasoning structures, applications of metareasoning to
reasoning problems, and the modes (techniques) used to control reasoning processes. This survey contributes
to the study of MAS by providing a framework for discussing multiagent metareasoning, highlighting
successful approaches, and indicating areas where future work may be fruitful.

INDEX TERMS Artificial intelligence, metacomputing, multiagent systems.

I. INTRODUCTION
Metareasoning describes reasoning about one’s own
decision-making process [15]. In dynamic, uncertain environ-
ments, metareasoning—a type of self-adaptation—seeks to
improve an autonomous agent’s performance by monitoring
and controlling the agent’s reasoning and decision-making
processes. For example, consider a mobile ground robot that
has a portfolio of planning algorithms that can determine a
sequence of tasks for the robot; some algorithms run more
quickly, but others generate better sequences that require
less time to complete. When it needs to plan a sequence,
the robot may run an algorithm selection procedure that
selects the most appropriate algorithm based on relevant fac-
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tors such as the number of tasks and the current computational
workload. Selecting an algorithm to create the sequence is a
metareasoning decision.

In an autonomous agent, metareasoning occurs in a meta-
level that monitors and controls the reasoning algorithms in
the agent’s object level, which contains the reasoning algo-
rithms that understand the environment and determine which,
when, and how ground-level actions should be performed
to achieve its goals [15]. In a multiagent system (MAS),
the agents’ object level may include additional reasoning
algorithms such as coordination and teaming. Ground-level
actions are actions that the agent takes that influence its envi-
ronment and affect its state in the world. They include actions
such as moving and sensing. In the example mentioned ear-
lier, the meta-level action is selecting the planning algorithm,
the object level includes the planning algorithm, and the
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ground level includes actions such as moving through
the environment. Anderson and Oates [2], Cox [14],
Cox and Raja [15], and Russell and Wefald [31] presented
fundamental concepts in metareasoning. This paper describes
how metareasoning has been applied in MAS.

MAS include swarms of unmanned air vehicles (UAVs,
also known as drones), multi-robot systems, computer net-
works, intrusion detection systems, smart grids, and other
applications [16], [33], [34]. For the purposes of this study,
a MAS has multiple agents that may cooperate with each
other by sharing information and coordinating their behav-
ior to accomplish a mission or a set of tasks. Coordinating
the agents’ behaviors to achieve the system goal requires
achieving consensus and synchronizing behaviors through
appropriate task allocation [16], [21]. Despite previous work
to develop collaboration algorithms (e.g., [12], [18], [19],
[22], [32]), coordinating the agents’ behaviors to achieve the
system goal remains a challenge, for instance when commu-
nication between agents is unreliable [23].

In a multiagent system, agents must reason not only about
their own actions but also about the actions of other agents,
which make the environment more dynamic. Although the
other agents can provide information, communication can be
costly, and the other agents may have different objectives.
This review considers communication as an object-level pro-
cess because some reasoning algorithms (collaborative task
allocation algorithms, for example) must communicate with
other agents as part of their decision-making process.

Metareasoning can help the agents in a MAS adapt their
reasoning algorithms and decision-making processes as the
problem space or environment changes. Compared with
metareasoning by a single agent (operating on its own),
multiagent metareasoningmay have different objectives (util-
ity functions), problems, and structures. First, in a MAS,
metareasoning may aim to maximize the utility of the MAS
instead of the individual agent’s utility. Second, in a MAS,
an agent’s object-level may include different types of rea-
soning algorithms such as communication, coordination, and
team formation (which are not relevant when there is only
one agent). Third, the agents in a MAS may use different
structures to perform metareasoning (instead of each agent
just metareasoning on its own), as described in Section II.

Although researchers have begun to study the potential
for metareasoning to improve the performance of multia-
gent systems, we are not aware of any systematic survey of
this topic. Existing surveys have focused either on multia-
gent systems or metareasoning but not both. For example,
Anderson and Oates [2] reviewed research in metareasoning,
but none of the work reviewed considered metareasoning for
multiagent systems. Likewise, Conitzer and Sandholm [13]
analyzed the computational complexity of some single-agent
metareasoning problems.

This paper aims to address that gap by describing key
aspects of previous research on metareasoning in multia-
gent systems, where there are challenges and opportunities
for metareasoning that do not exist when a single agent is

operating independently. Researchers and system developers
can benefit from a survey that not only describes basic defini-
tions and previouswork inmultiple domains but also analyzes
the progress of this stream of research and presents the next
set of research challenges [25]. Such a survey will provide
insights into how to use multiagent metareasoning effectively
and help orient those beginning to work in this area.

This paper describes previous work on multiagent metar-
easoning from three perspectives: (1) the metareasoning
structure, the relationship (if any) between the agents at
the meta-level; (2) the metareasoning problem, the partic-
ular aspect of the agent’s reasoning that the meta-level is
controlling; and (3) the metareasoning mode, the means by
which the meta-level modifies object-level reasoning. This
paper focuses on these aspects because they describe the key
relationships between metareasoning and the other aspects of
the agents in the MAS.

This paper is not a comprehensive description of metar-
easoning or review of all research on metareasoning, which
is beyond the scope of this work, and it does not consider
system design problems that are solved off-line to determine
aspects of the MAS (e.g., its structure or the control policy)
before it begins operating. Internal details of metareasoning
algorithms are also beyond the scope of this paper.

The remainder of this paper is organized as follows:
Section II describes multiagent metareasoning structures.
Section III describes multiagent metareasoning prob-
lems. Section IV describes multiagent metareasoning
modes. Section V discusses our conclusions from this review.
Section VI summarizes the paper and presents potential
directions for future research.

II. METAREASONING STRUCTURES
There are multiple ways to implement metareasoning in a
MAS. For example, in some approaches, each agent has its
own meta-level that controls its own object-level reasoning.
Other approaches use a centralized leader that controls the
agents’ reasoning. This section describes the different multi-
agent metareasoning structures that previous work has con-
sidered; the cited papers describe specific examples. (Note,
because each metareasoning approach adopts a structure to
govern reasoning about a problem through amode, each study
is discussed multiple times across Sections II, III, and IV.)

A. INDEPENDENT METAREASONING
In this type of structure, each agent in the MAS has its own
meta-level, which performs metareasoning independently of
the other agents, although the agents’ object levels may com-
municate, as shown in Fig. 1. In the studies that we reviewed,
this structure was very common in both non-cooperative
MAS [28] and cooperative MAS [1], [5], [6], [9], [17], [20],
[24], [26], [29], [30], [35], [36]. Because the meta-levels are
independent, no additional communication or coordination
between the agents is required, so implementing this struc-
ture is easier than implementing a decentralized structure.
This structure adds the overhead of the meta-level to each
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FIGURE 1. Multiagent independent metareasoning structure with three
agents that communicate at the object level.

agent, which may affect the computational resources avail-
able at the object-level. In a cooperative system, moreover,
the meta-level should consider how the agent’s reasoning
affects not only agent-level performance but also system-level
performance.

B. COUPLED METAREASONING
In this type of structure, each agent in the MAS has its
own meta-level, which performs metareasoning indepen-
dently of the other agents except for the following: when
one meta-level has decided to halt its agent’s object-level
reasoning, it communicates this decision to the other agents,
and those meta-levels halt their object-level reasoning as well
[10], [11]. As shown in Fig. 2, the meta-levels are coupled
because one agent’s metareasoning decision depends upon
another agent’s metareasoning decision (thus, the interaction
goes one way; it is not bidirectional). In this structure, unlike
the decentralized metareasoning structure, the meta-levels do
not cooperate to make a coordinated decision; the meta-levels
work independently, but they stop simultaneously. In a MAS
in which the agents cannot act until they are finished rea-
soning, this coupling enables the agents to coordinate their
behaviors. The communication cost in this structure is lower
than the communication cost in the decentralized structure,
but the metareasoning decision may be a poor one for agents
that needed more time to find a better solution.

FIGURE 2. Instance of multiagent coupled metareasoning structure in
which one agent sends a halt signal to the other agents.

C. DECENTRALIZED METAREASONING
In this type of structure, the agents in the MAS cooperate to
determine how they are going to reason, as shown in Fig. 3.
For example, Artikis [4] described a multiagent metareason-
ing approach in which the agents can propose and vote to
enact changes to the rules that govern the MAS, even though
the agents are competing against each other for external
resources. This structure requires more communication and
coordination, which may increase the overhead associated
with metareasoning, but, by cooperating, the agents may be
able to achieve better reasoning.

FIGURE 3. Multiagent decentralized metareasoning structure of three
agents with meta-levels that communicate and coordinate.

D. MULTIPLE METAREASONING AGENTS
In this type of structure, theMAS includes, as shown in Fig. 4,
additional specialized metareasoning agents that engage in
metareasoning, and the reasoning of the other agents is influ-
enced by the metareasoning agents. For example, a MAS
in which some agents are trying to predict future events
may have additional agents that determine which agents
should cooperate [7], [8]. This structure adds resources (more
agents) to perform metareasoning so that the other agents
have no additional overhead. Keeping the metareasoning
agents informed and communicating their metareasoning
decisions will require more communication.

FIGURE 4. Multiple metareasoning agent structure of two agents for each
meta-level agent.
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E. CENTRALIZED METAREASONING
In this type of structure, a designated ‘‘leader’’ agent does
the metareasoning and tells the other agents how to reason,
as shown in Fig. 5. The leader’s objective is to maximize the
performance of the entire system. For example, in a MAS in
which agents are self-interested and will cooperate with some
(but not all) of the other agents, themeta-level agent described
by Pěchouček et al. [27] monitors the reasoning of the agents
and shares that information with the other agents, which helps
them make better decisions about forming coalitions (teams)
of agents to accomplish tasks. Like the structure withmultiple
metareasoning agents, this structure adds additional resources
and incurs the cost of additional communication. A single
metareasoning agent that has information from the entire
MAS should be able to make high quality metareasoning
decisions.

FIGURE 5. Centralized multiagent structure consisting of three agents
with a central agent that monitors and controls all object level reasoning.

III. METAREASONING PROBLEMS
This section describes the metareasoning problems that pre-
vious work on multiagent metareasoning has considered.
An agent’s object-level reasoning process may have many
components, so there may be many options for which
object-level reasoning activity the meta-level is controlling.
There is no standard taxonomy of object-level reasoning for
MAS, so the reasoning activities listed here are based on the
papers in our survey.

As discussed in the following subsections, the papers that
we reviewed discussed the following multiagent metarea-
soning problems: (1) multiagent coordination; (2) planning
and scheduling; (3) communication; (4) resource allocation;
(5) belief updating; (6) learning; (7) forecasting; (8) teaming;
and (9) task delegation. In general, metareasoning about the
reasoning processes that are solving these problems seeks
to improve system performance while either reducing com-
putational cost or satisfying constraints on computational
resources.

A. MULTIAGENT COORDINATION
Research on multiagent systems has expanded the number
of coordination methods available in multiagent settings.

Coordination methods present a trade-off between character-
istics such as number of messages that should be sent and
collaboration metrics, and their performance varies across
different environments. Thus, it may be possible to improve
performance by switching between coordination methods as
the environment changes.

This problem can occur in a decentralized MAS in which
the agents have little communication during runtime with
their centralized controller and use a coordination policy
to determine which tasks to perform. For a ship protection
scenario, Herrmann [17] presented an approach in which each
agent uses neural networks to estimate the performance of the
candidate collaboration algorithms and selects the algorithm
with the best estimated performance at that decision point.
The best metareasoning policy studied reduced computa-
tional effort without degrading system performance.

When communication availability varies over time,
the agents must determine which algorithm to use when com-
munication availability changes. Carrillo et al. [9] determined
a switching policy offline by evaluating the performance of
collaboration algorithms at different levels of communication
quality and showed that the metareasoning policy yielded
better performance than using a single, fixed algorithm for
decentralized task allocation in search, search and rescue, fire
monitoring, and ship protection scenarios.

Negotiation is a type of coordination algorithm, and
Raja and Lesser [29] described a MAS in which each agent’s
meta-level must determine which negotiation algorithm to
use. (This work also considered scheduling.)

B. PLANNING AND SCHEDULING
When an agent has many tasks to perform, its object level
uses planning and scheduling algorithms to determine when
it will do which tasks. Because planning and scheduling algo-
rithms can be computationally expensive, controlling these
algorithms is an important meta-level activity. For example,
Raja and Lesser [29] described a meta-level that determines
when to call the scheduling algorithm and selects among two
scheduling algorithms that have different performance pro-
files so that urgent, high-value tasks can be scheduled quickly.
Because computing the optimal policy using the real system
state was intractable, they compared hand-generated heuristic
policies and a policy derived from aMarkov decision process
that was based on a high-level (abstract) state. Using this
abstract state reduced the overhead associated with the meta-
level.

In the MAS considered by Rubinstein et al. [30], an agent
has multiple scheduling algorithms (one that modifies its own
schedule and another that creates hypothetical schedules in
response to queries from other agents), and the meta-level
controls these algorithms (and the resources that they use) by
modifying their parameter values.

When the agents are working together to solve the planning
problem, theymust coordinate their reasoning to reach a good
solution in a reasonable amount of time, so each agent’s
metareasoning must consider not only its own computation
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but also the progress of the other agents. Metareasoning must
balance reducing the cost of computation and working longer
to get a better solution. For a set of agents that are using any-
time algorithms, Carlin and Zilberstein [10], [11] formulated
this problem as a decentralized MDP so that the agents can
decide when to stop computing based on their progress. They
found that the metareasoning problem is computationally
complex, but metareasoning policies can be determined by
solving the decentralized MDP (if the number of agents is
small) or using greedy algorithms for larger MAS.

Parker [26] studied metareasoning policies that update
the values of control parameters that affect the algorithms
that an agent uses to determine which tasks to perform and
when to stop performing a task so that another agent can
perform it. In particular, these parameters govern an agent’s
‘‘impatience,’’ which affects when it takes over a task that
another agent is performing, and its ‘‘acquiescence,’’ which
affects when it will give up a task to another agent.

C. COMMUNICATION
An agent’s object level will often communicate with other
agents to share information that the other agents may use
in their reasoning, but communication consumes resources.
The meta-level may control communication to reduce com-
putational cost. For example, in the MAS described by
Xuan et al. [35], each agent decides, using a meta-level
heuristic policy, whether to share its local information with
the other agents, who cannot observe it directly; this commu-
nication has a cost but may help the other agents generate bet-
ter solutions that lead to better system performance. Another
option is to modify the communication policy during mission
execution in response to the agents’ needs [5].

D. RESOURCE ALLOCATION
Agents depend upon resources in order to reason and to
perform actions. In some MAS, resources are allocated to
agents by a resource allocation function. Changing resource
allocation can affect the performance of the agents. (Here,
resource allocation refers to providing agents with exter-
nal resources, not the allocation or use of the agent’s own
resources.) Artikis [4] considered a resource allocation pro-
tocol that used rules to determine which agents had priority
to get requested resources. The agents may propose changes
to these rules and then vote to determine which rules were
enacted.

E. BELIEF UPDATING
Each agent maintains beliefs about the environment and other
agents, and it uses reasoning algorithms to update these
beliefs when it obtains new, possibly inaccurate, informa-
tion. Inaccurate information can be sent from agent to agent
either voluntarily or involuntarily. For example, noise can
distort a message involuntarily, but a competing agent may
maliciously send false information. Belief updating is part
of an agent’s object-level reasoning, so it can be controlled
by the meta-level if the agent realizes that some agents are

sending inaccurate information. Pinyol and Sabater-Mir [28]
studied a metareasoning approach that adapted the way that
an agent updates its beliefs in order to avoid two extremes
(never trusting any agent, and always trusting every agent)
that lead to poor system performance.

F. LEARNING
An agent learns by using the results of its actions to update
the rules that it uses when reasoning. Metareasoning can
monitor and control the learning algorithm so that the agent
learns well with reasonable computational cost. For exam-
ple, in Zhang and Lesser [36], the agents are communi-
cating and coordinating with other agents during learning;
correctly limiting the set of agents with which an agent
coordinates reduces computational costs but has little impact
on learning gains; system performance improvedwhen agents
communicated with smaller higher-quality groups of agents.
In Noda and Ohta [24], each agent’s meta-level modifies the
agent’s learning algorithm so that it is more likely to explore
when it is choosing poorly.

G. FORECASTING
Agents may use forecasting to predict future events in the
environment or actions by other agents. Metareasoning con-
trols the forecasting algorithm in order to improve the pre-
dictions that are made. For example, grouping agents into
clusters allows agents in the same cluster to share information
and make better predictions about future events [10], [11].
For a MAS in which agents predict how other agents will
behave, Borghetti and Gini [6] studied an algorithm selection
approach that determined which prediction method to use by
monitoring and then estimating each method’s utility in the
current context, which is an abstract, high-level state. Using
this context reduces the overhead associated with estimating
performance, which is done at the meta-level.

H. TEAMING
The agents in a MAS may decide to work together
in small groups or teams to accomplish their tasks.
Teaming is the reasoning process that determines which
agents should work together. In this context, a team is a
temporary arrangement that performs one or more tasks. For
example, Pěchouček et al. [27] studied a centralized metar-
easoning approach that helps agents make better decisions
about forming coalitions (teams) of agents to accomplish
tasks when the agents lacked information about each other.
In this approach, a meta-agent maintained a belief model
of all agents in the system, continuously updated it based
on events that occurred, and shared its conclusions with the
agents; combining both inductive and deductive reasoning
yielded more valuable information.

I. TASK DELEGATION
When an agent can assign tasks to another agent, task dele-
gation is the reasoning process that determines which tasks
to assign to which agents. (Here, task delegation refers to
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one agent commanding another agent to do something, not
collaborative task allocation, in which the agents are coop-
erating as peers.) Task delegation may be constrained by
the nature of the relationships between the agents, however,
so metareasoning can influence task delegation by redefining
an agent’s relationships with other agents [1], [20].

IV. METAREASONING MODES
This section arranges previous work on multiagent metar-
easoning by the mode that the meta-level uses to control
object-level reasoning. (The mode does not describe how the
meta-level decides. The mode describes what is specified or
modified as the result of metareasoning; that is, the mode
is the output, not the process.) This ranges from stopping a
computational algorithm to changing the rules that govern
agent interactions. Themodes discussed herein occur inMAS
and are determined as the agents perform their mission.

A. STOPPING AN ALGORITHM
In this mode, the meta-level determines when an object-
level computation or algorithm should stop so that the
object-level can begin other computations or act on the
object-level decision. This mode is especially appropriate
when the object-level algorithm is an anytime algorithm; the
meta-level monitors the current state of the computation and
tells the object-level when to stop the computation so that
it can either start another computation or begin the selected
action [10], [11].

B. MODIFYING A PARAMETER VALUE
The reasoning algorithms that agents use are governed by
different parameters, so one opening for metareasoning is to
modify the parameter value in response to changing condi-
tions in order to improve performance.

For example, Pinyol and Sabater-Mir [28] considered a
system in which a buyer agent receives information from
multiple informant agents, who provide true and false infor-
mation about multiple seller agents. The buyer agent modifies
the function that it uses to update its beliefs about the sellers
in response to the validity of the information that it has
already received. A fixed updating function would lead to
poor performance when conditions are changing or when
an agent has incorrect prior beliefs about the other agents.
This work used a simple update rule that required minimal
computational resources.

Modifying a parameter can also affect the computational
resources that reasoning algorithms consume. For example,
Rubinstein et al. [30] used a metareasoning rule to modify
parameters that affected the search algorithms used by differ-
ent reasoning algorithms that were competing for resources;
modifying the parameter values affected the computation
resources used and the quality of the solution obtained by
these algorithms (such as modifying its own scheduling and
creating hypothetical schedules in response to queries from
other agents).

Noda and Ohta [24] studied a MAS in which the agents are
learning policies for choosing resources based on their own
experience and the experience of other agents. Each agent’s
meta-level modified the values of parameters in the learning
algorithm to encourage exploration or exploitation based on
the agent’s current performance.

In the multi-robot architecture proposed by Parker [26],
each agent has a meta-level that monitors task performance
and modifies the parameters of the algorithms that the agent’s
object-level uses to determine which tasks to perform and
when to stop performing a task so that another agent can
perform it. Parker studied different metareasoning policies
that collected data about task performance and used that data
to update the parameter values in different ways.

C. MODIFYING REASONING RULES
The agents in a MAS must follow certain rules that govern
how they interact. Typically, these rules are determined a pri-
ori by the system designers. It is possible, however, to give
the agents the ability to change these rules. For example,
Artikis [4] considered a MAS in which the agents can pro-
pose and vote on changes to a resource-sharing protocol (the
object-level reasoning). Although certain types of changes
can be considered without harming the system, any change
that is too far from the ‘‘desired’’ protocol cannot be approved
(but the characteristics of the ‘‘desired’’ protocol change as
aspects of the environment change). This constraint prevents
the agents from enacting self-destructive protocols. Agents
want to change the rules (in the resource-sharing protocol) to
benefit themselves and evaluate possible changes from that
perspective. When voting, each agent votes based on whether
the change benefits itself, so that changes that benefit more
agents are implemented.

D. SELECTING A REASONING ALGORITHM
Algorithm selection is a well-known metareasoning problem,
and it occurs in a MAS when the agents must select algo-
rithms that affect their reasoning about other agents or how
they collaborate with other agents. Algorithm selection can be
done by using a rule that determines which algorithm to use
based on the current state or by estimating each algorithm’s
performance in the current state and selecting the best one.
For example, in the MAS described by Raja and Lesser [29],
an agent’s meta-level determines which scheduling algorithm
to use and which coordination (negotiation) algorithm to use.

In settings where communication availability varies over
time, agents may want to switch collaboration algorithms
(which depend upon communication) to use the best one.
To keep online metareasoning effort low, Carrillo et al. [9]
determined a switching policy offline by evaluating the per-
formance of collaboration algorithms at high and low levels
of communication and implemented a metareasoning policy
that selected the collaboration algorithm based on the current
communication quality.

In some cases, a simple collaboration algorithm that
requires less time can generate high-quality solutions.
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Herrmann [17] generated regression functions to estimate
collaboration algorithm performance as a function of the cur-
rent state. Although training the regression functions required
much data, using them online requires little effort and allows
one to add or remove algorithms without affecting the other
regression functions. The results showed that a combination
of one fast, simple algorithm and one more sophisticated, but
time-consuming algorithm performed well.

For selecting the best method to predict the behavior of
other agents, Borghetti and Gini [6] proposed a metareason-
ing approach that monitors the performance of different pre-
diction methods and updates estimates of their performance.
When the agent needs to make a prediction, it uses these
estimates (which depend upon the current state) to select a
prediction method.

E. AUTHORIZING COMMUNICATION
In a multiagent system, communication is an important rea-
soning activity when agents do not have complete informa-
tion about the system state, but excessive communication is
costly and brings no additional benefit. Determining whether
to communicate is a metareasoning problem, and the general
principle is to communicate if the expected gain is greater
than its cost. Because finding an optimal communication pol-
icy is an intractable problem, Xuan et al. [35] considered dif-
ferent heuristics as meta-level control policies that determine
when an agent should communicate. A hybrid policy that
considered both the expected gain and the communication
cost performed better than simpler heuristics that did not
explicitly consider the communication cost. Becker et al. [5]
studied an approach in which every agent follows the same
policy (determined offline) and calculates the expected value
of communication based on its beliefs about the other agents;
the agent communicates if this value is positive. Having a
computationally feasible procedure to determine the expected
value of communication enabled the agents to make this
decision based on the current state.

F. SHARING INFORMATION
In some MAS, an agent’s reasoning depends upon its beliefs
about other agents and how they reason. A meta-level can
control agent reasoning by providing more or new informa-
tion about other agents. For example, the meta-level agent
described by Pěchouček et al. [27] controls the reasoning of
the agents by sharing information that it has deduced about
the other agents’ reasoning.

G. DESIGNING COORDINATION
The ability of agents to coordinate generally depends upon
their ability to communicate, and often agents try to coor-
dinate with as many agents as possible. Because coordi-
nation requires communication, however, coordinating with
every other agent may require excessive communication cost,
and letting each agent determine its ‘‘coordination set’’ (the
agents with which it will coordinate) may reduce communi-
cation cost. Zhang and Lesser [36] considered this problem

and developed a metareasoning approach in which each agent
considers all possible coordination sets and selects the small-
est one that still yields acceptable estimated performance.
They found that tolerating just enough loss of performance
can dramatically reduce computation cost.

Brueckner [7] used a different approach to determine
which agents should work together (this work was also dis-
cussed by Brueckner and Parunak [8]). In order to decouple
the metareasoning and reasoning functions, a set of metarea-
soning agents cluster the other reasoning agents into groups,
and the agents in a group cooperate, which increases their
effectiveness.

H. REDEFINING RELATIONSHIPS
In some MAS, the relationships between agents are not lim-
ited to peer-to-peer interactions, and these relationships affect
how the agents reason. For instance, a superior agent may
ask a subordinate agent to provide information or perform
calculations for it. The corresponding metareasoning mode
is to redefine (modify) these relationships in order to modify
the agents’ reasoning, which can affect system performance.
(This does not change the existence of the relationship, as in
designing coordination; it changes the nature of the relation-
ship.) Kota et al. [20] considered a MAS in which an agent’s
meta-level determines when to redefine its relationships with
other agents; an agent that is performing poorly will prefer
to change its relationships despite the cost of reorganization.
Ahmadi and Allan [1] studied a similar system and consid-
ered how limiting the number of relationships to redefine
reduced the cost of reorganization.

V. DISCUSSION AND OPEN PROBLEMS
As shown in this survey, previous work on multiagent
metareasoning has studied a wide variety of metareasoning
structures, applied metareasoning to different problems, and
used different metareasoning modes. This reflects the variety
of MAS that have been developed for many different settings.
Table 1 lists the papers that have been reviewed and sum-
marizes the structures, problems, and modes that each one
considered.

In principle, metareasoning should monitor and control
an agent’s object-level reasoning to optimize overall system
performance, including the cost of computation and commu-
nication. Previous research has not yet developed a general
formulation of this problem, which would require knowl-
edge about the cost and performance of every aspect of
an agent’s reasoning process and how these combine to
influence system performance. In the face of this complexity,
researchers have reasonably adopted various and widely
different approaches that address different parts of this prob-
lem. Although most studies have adopted (or are consistent
with) the general framework of meta-level monitoring and
control of object-level reasoning, researchers have investi-
gated practical, system-specific approaches. (There is also the
possibility of moving to a meta-meta-level that reasons about
the metareasoning approach, with the goal of optimizing the
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TABLE 1. Summary of metareasoning structures, problems, and modes in
multiagent metareasoning papers reviewed by this survey.

metareasoning; for instance, a meta-meta-level can change
the metareasoning policy that the meta-level uses to select
the task allocation algorithm that the object-level uses.)

This variety makes directly comparing metareasoning
approaches difficult; an approach that was developed for one
type of MAS may be irrelevant to another MAS. Ultimately,
however, the goal is to improve object-level reasoning, which
often involves trade-offs between computational cost and
solution quality (and other metrics); as a general rule, one can
consider metareasoning whenever such a trade-off appears. In
that case, the metareasoning approach should balance these
competing objectives and adjust the reasoning as the situation
changes. The work reviewed in this survey provides numer-
ous options for doing this.

VI. SUMMARY AND CONCLUSION
Autonomous agents use reasoning algorithms to process sen-
sor information, control their activities, and plan future tasks.
Metareasoning monitors and controls an agent’s reasoning so
that it can make better decisions and achieve its goals more
quickly while using fewer computational resources.

Based on a systematic review of the relevant literature,
this survey identified and discussed multiple metareason-
ing structures, the application of metareasoning to different

problems, and the various modes by which metareasoning
controls object-level reasoning in MAS. This paper focused
onmetareasoning that agents perform duringMAS operation,
and it provides both a narrative review that describes the mul-
tiagent metareasoning approaches that have been studied and
a scoping review that identifies research gaps in multiagent
metareasoning.

Increases in computational power, communication tech-
nologies, and collaboration algorithms are driving the devel-
opment of MAS for more types of missions in multiple
domains. Optimizing the reasoning of autonomous agents,
which have limited resources, is an active area of research,
and metareasoning approaches can help. But there is much
more to do.

Based on our review of multiagent metareasoning
approaches, we have identified gaps in the literature that
can serve as a basis for further research. One gap is the
paucity of work that has systematically tested and evaluated
metareasoning approaches against each other. Evaluation can
be done in simulation models, but evaluating metareasoning
approaches implemented on real vehicles is also needed to
build confidence and demonstrate their value.

Previous work has implemented metareasoning policies
(e.g., which algorithm should be selected given the current
state) that were determined by human developers. Future
work should consider using machine learning techniques
that can automatically develop high-quality metareasoning
policies from data about algorithm performance.

Another gap in the literature is the lack of papers that
address the general multiagent metareasoning problem of
optimizing reasoning performance with limited time and
resources. It is possible that a MAS provides benefits such
as more information and additional resources, which should
yield better metareasoning. Future research in multiagent
metareasoning should focus on exploiting the advantages of
MAS to perform metareasoning (such as including an agent
that performs metareasoning for the other agents).
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