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Abstract—This paper examines the effect that the selection
of the different collision avoidance trigger time has on UAV
safety and avoidance efficiency and finds the optimal trigger
time for different cases. The trigger time indicates when a
collision avoidance maneuver begins. An earlier trigger time
is safer for the UAV to avoid all the obstacles but causes the
UAV to deviate away from its intended path, while a delayed
avoidance trigger action reduces overall path deviation but entails
a higher risk of collision. Thus, the balance between safety
and avoidance efficiency is important. Simulations for different
mission scenarios show that by selecting specific avoidance trigger
times, missed waypoints which are a result of the avoidance
maneuver, could be reduced by over 40%. In addition, avoidance
time and space required by the avoidance maneuver are also
reduced, as compared to always starting the avoidance maneuver
when the obstacle is first detected. Hence, selecting the avoidance
trigger time can improve the performance of the UAV’s avoidance
maneuver, especially for real-time applications.

Index Terms—collision avoidance, trigger time selection, avoid-
ance efficiency, missed waypoints

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) play an important role
in applications where the environment may be hazardous for
humans, such as in search and rescue operations, agricultural
monitoring and aerial photography. 1200 UAV incidents and
sightings reported to FAA [1]. Near New York City, in
September of 2017, a civilian UAV collided with a helicopter
and caused serious damages. In August of 2018, a hot air
balloon was struck by a UAV while carrying passengers flying
over Driggs, Idaho. Fortunately, there were no injuries but the
two air vehicles were destroyed. Thus, collision avoidance is
one of the key safety issues for UAVs and aviation [2]. Figure
1 shows a simple diagram of a UAV avoiding one dynamic
intruder successfully.

Algorithms for UAV collision avoidance have been devel-
oped for decades. These depend on the different types of
conflicts and available information. For instance, global path
planning methods are used when sufficient information on
the obstacles and the environment is provided [3]. The A*
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algorithm [4] and D* algorithm [4][5] are two types of global
path planning methods. They use cost functions to calculate
conflict-free paths and pick up intermediate waypoints. The
A* method checks from the beginning node to the destination
node while D* checks from the end and back to the beginning
with time variant cost functions. If only local data is available
to the UAS sensors, then a local path planning method such as
[6] is applied. Sampling-based methods [7], which can be ei-
ther a global or local algorithm, examine several points around
a waypoint, then add the points outside the conflict zone into a
valid waypoint set. There are other classifications of collision
avoidance approaches, e.g. potential field methods and virtual
force field methods, which can be applied when gradients of
force and relative variables are easy to compute. The above
approaches might have a good obstacle avoidance performance
[8][9], but the computational burden is a disadvantage for
their real-time application [10][11]. Another algorithm which
has been widely applied is the geometric method[12][13],
which uses the geometric relationship between the UAV and
the obstacles. Variables in this method include: distance,
angle, relative speed and the probability of conflicts on the
grid between the UAV and obstacles. It then computes the
desired direction and speed for the UAV to follow, with less
computation time.

Fig. 1. Collision avoidance diagram: UAV avoids a dynamic obstacle

None of the above methods look at the effect that avoidance
start and end times have on algorithm outcomes, or whether
the efficiency of conflict resolution remains the same or is
changed.

In this work, we conduct twenty thousand of simulations
and found that even if the same collision avoidance approach
is applied to the same scenario with different avoidance action
trigger times, the results including the collision avoidance
success possibility and the time cost are significantly different.
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In [14], the critical avoidance trigger time tc, for the UAV
to have last chance to escape from the collision conflicts is
calculated, but there isn’t a quantitative analysis of the cost
for UAV to operate this action. Also, the different possible
variations of successful avoidance when UAV starts its escap-
ing action between t=0 and critical time tc are not explored.

In this work, we use geometry methods as they have a
lighter computation burden and a fast calculation time [14],
which is an advantage for conducting Monte-Carlo simula-
tions. This paper examines the following parameters under
varying avoidance trigger times:

(1) Psucc, collision avoidance success rate, which means
under a large amount of randomly generated scenarios, the
percentage that the UAV successfully avoids the collisions with
avoidance trigger time tt.

(2) CostW , waypoint-related cost, the number of waypoints
that the UAV misses as a consequence of collision avoidance
operation.

(3) CostL, path-related cost, compared to the original path
[15], the length of the new path generated due to the collision
avoidance.

(4) CostS , 2D space-related cost, space occupied by colli-
sion avoidance operation.

(5) CostT , the time UAV deviates from its original airway.
(6) Costtotal, summary of the above cost, CostW , CostL,

CostS and CostT .
A selection of the collision avoidance trigger time can (1)

save over 40% path length and 40% missed waypoints, (2)save
on collision avoidance operation space, (3)spend less time
deviating from its initial path, which can have less effect on
the route of other aircraft, and (4)achieve a relatively high
collision avoidance success rate.

This paper is organized as follows: Section II presents the
problem formulation and model set up. Section III describes
the the selection of the different trigger times. Section IV
presents the simulation results and analysis. Section V presents
the conclusions and discusses future work.

II. PROBLEM FORMULATION

Cost functions are frequently applied to UAV collision
avoidance and path planning algorithms to determine an appro-
priate trajectory for UAV. Research in [16] uses the function of
UAV deviated angle to calculate the cost, aiming at choosing
the collision-free path with minimum direction variation. [17]
uses the function of the deviation distance to compute the cost,
selecting the collision-free path with minimum variation from
the initial path. Work in [18] chooses the function of visibility
range, and its goal is to determine the collision avoidance
solution for UAV with maximum visibility of the environment.
In our work, the reward function Reward is composed of two
items, one is avoidance success rate Psucc and another is cost
function Costtotal, where the cost function Costtotal is related
to the waypoint missed, path length, space occupied and the
time spent while deviating from its original path.

The definition of the variables used in this work are found
in Table I. The characteristics being compared in this work are

collision avoidance success rate Psucc, waypoint-related cost
CostW , path-related cost CostL, space-related cost CostS ,
environment-related cost CostT and total cost Costtotal with
corresponding reward Reward. These characteristics are ex-
plained in details as follows.

TABLE I
MAIN VARIABLES

U = (Ux, Uy , Uz) UAV and the location of UAV
Ai = (Ax, Ay , Az) ith obstacle and its location
−→
Vu = (Vux, Vuy , Vuz) Velocity of the UAV
−→
Vai = (Vax, Vay , Vaz) Velocity of the ith obstacle

CPA Point of closest approach
ρ Minimum turning radius
dm Minimum separation radius
−→r Distance between the UAV and the obstacle
−→
Vr Relative speed between the UAV and the

obstacle
tc Critical avoidance trigger time
tt Avoidance trigger time

A. Conflicts avoidance success rate

If the UAV triggers avoidance action at time tt after
detecting the obstacles, the possibility of avoiding the collision
successfully is defined as Psucc, the success rate. 5000 cases of
UAV and obstacles with randomly generated speed, direction,
distance and altitude are used to calculate the success rate
every time.

B. Waypoints missed

Figure 2 (a) shows that due to collision avoidance opera-
tions, the waypoints that are inside the collision zone will be
missed since the area is considered unsafe. In Figure 2 (a)
at t = 0, the UAV (located at U) detects the obstacles. If it
starts the avoidance action immediately (gray-blue line), the
1st, 2nd 3rd and 4th waypoints W1 W2 W3 and W4 will not
be followed. In contrast, starting later at a particular time tc
(green line), the 3rd and 4th waypoints W3 and W4 are missed
by the UAV while 1st, 2nd and 5th waypoints are reached.
The portion of missed waypoints from the total waypoints is
defined as waypoint cost, Costw.

In general, assume the total number of waypoints in the
UAV’s initial path is N. The location when the UAV detects
the obstacles is U, the conflict location is C, and the number
of waypoints between U and C is M, Figure 2 (a).

Suppose the time at which the UAV collides with the
obstacles is tc, the time that detects the obstacles is t0, the
time that starts the avoidance is tt. Thus, the approximated
number of missed waypoints Mw is

Mw = M
tc − tt
tc − t0

(1)

Where tc > tt ≥ t0. As tt increases from t0 to tc, the
waypoint missed Mw decreases.

Figure 2 (a) shows that the waypoints are located in a
straight line while Figure 2 (b) shows that the waypoints are
located randomly. The conclusions are similar.
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Fig. 2. UAV misses some of the waypoints in when avoiding collisions

The cost relative to the waypoint missed is defined as,

Costw =
Mw

N
=
M

N

tc − tt
tc − t0

(2)

C. Additional path length

In Figure 2 (a), different trigger times results in a different
path length. The green line represents the UAV’s trajectory
where the avoidance operation starts at t = tc, and the blue line
is the UAV’s trajectory where the avoidance operation starts
at t = 0. From the work in [14], it’s concluded that the green
line is shorter than the blue line in almost all situations. The
ratio of the additional trajectory’s length over the UAV original
trajectory’s length is defined as the cost of path, CostL.

The comparison of the length of green and blue line (length
of path saved) as shown in Figure 2 is proved at [14].

Suppose the original length of path from beginning to the
destination is L0, the additional path due to collision avoidance
action is L. Then the cost of the path length is defined as,

CostL =
L

L0
(3)

D. Avoidance operation space

The areas under the effect by the UAV collision avoid-
ance action is claimed as avoidance operation space S. The
avoidance action is in 3D space with yaw angle, pitch angle
and speed variation. For easy calculation, the space is defined
as the surface instead of the volume, which is calculated as
when UAV starts its obstacle avoidance operation, the planar
space surrounded by the original path, collision point (CPA,
the closet point of approach) and the new path. Figure 3 (a)
shows a example of it. In Figure 3 (a), if UAV starts avoidance
at the time t0 (the time UAV first detects the obstacles), the
corresponding operation space is S1, the pink area plus blue
area. In contrast, if the UAV starts the avoidance action at tc,
the operation space is S2, the pink area only. S1 and S2 have
different size. In Figure 3 (b), where the waypoints are located
randomly, the above definition remains similarly.

The length of the original path from start to the destination
is L0. Since the UAV should have separation distance dm to
keep safe, the space used during the flight task is,

Fig. 3. Space occupied by collision avoidance operation

S0 = 2dm ∗ L0 (4)

The avoidance operation space is S. Thus, the cost relative
to the space occupied is defined as,

CostS =
S

S0
=

S

2dmL0
(5)

The quantitative comparison of the avoidance space size due
to different trigger times is provided in the simulation section.

E. Effects on the environment

The different collision avoidance trigger times will have
the different effects on the environment (other air vehicles’
airways). As shown in Figure 4, the UAV travels in Airway1
initially, with yellow line. The width of the Airway1 is 2dm.
To avoid obstacles located in its future path, the UAV deviates
from its original path. The light blue line means the UAV
deviates at time t0 while the green line means it deviates
at time tt. The time during which the UAV travels outside
the Airway1(green line or blue line beyond the Airway1) is
defined as the deviation time Teff , which has the possibility
to affect another aircraft nearby.

Then the percentage of the deviation time over the original
time consumed to finished flight task is CostT .

Fig. 4. Collision avoidance operation deviates the UAV from its original
airway and might have effects on the air corridors of other aircraft (schematic
is not drawn to scale, especially in airspace)
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If T is the total time taken by the UAV to complete its
mission without any obstacles on its way, we can define the
time cost as the following ratio

CostT =
Teff
T

(6)

F. Total cost and reward function
The total cost function for a UAV’s flight mission and

conflict resolution can be defined in many ways, as previously
mentioned [16][17] and [18], depending on flight plan goals
and overall scenario. In this paper, the final cost function and
reward function are defined as,

Costtotal = Costw ∗ CostL ∗ CostS ∗ CostT (7)

Reward = Psucc/Costtotal (8)

G. Model setup
The model applied in this paper is based on a small size,

fixed-wing UAVs, to be consistent with future hardware tests.
The speed of commanded UAV ranges from 5 m/s to 15 m/s.
The minimum separation radius dm is set to be 30 meters. This
work assumes that obstacles’ sensor data, e.g. ADSB data is
available to the UAV.

During collision avoidance maneuvers, the UAV changes
its yaw angle, pitch angle, bank angle and speed to avoid the
obstacles in 3D space. To reach the desired value, PID control
is applied.

ψ̇ = Kp(ψc − ψ) +Ki

∫
(ψc − ψ) +Kd

∫
(ψc − ψ) (9)

θ̇ = Kp(θc − θ) +Ki

∫
(θc − θ) +Kd

∫
(θc − θ) (10)

Where ψ and θ are the yaw and pitch angle. Then at ∆t,

ψ(∆t) = ψ + ψ̇∆t (11)

θ(∆t) = θ + θ̇∆t (12)

since the relationship between the yaw and bank angle ψ is,

ω = ψ̇ =
gtanφ

Vu
(13)

The bank angle at ∆t is updated to:

φ(∆t) = tan−1(
ψ̇Vu
g

) (14)

For less computation time in the Monte-Carlo simulations,
the standard kinematic model [2] of UAV is used. Hence, the
velocity of the UAV in the x, y and z direction is,

Vux = Vucosθcosψ (15)

Vuy = Vucosθsinψ (16)

Vux = Vusinθ (17)

The position of the UAV is calculated as,

Ux(∆t) = Ux + U̇x∆t = Ux + Vux∆t (18)

Uy(∆t) = Uy + U̇y∆t = Uy + Vuy∆t (19)

Uz(∆t) = Uz + U̇z∆t = Uz + Vuz∆t (20)

III. COLLISION AVOIDANCE OPERATION TRIGGER TIME

The key issue is the set up of the different avoidance
trigger times. The first step is to find the critical avoidance
time tc, which is also the final possible time for the UAV
to successfully escape from the conflicts. In simulation, the
trigger times are set between 0 and tc.

A. Find the critical avoidance operation trigger time tc

Fig. 5. Collision avoidance geometry with critical avoidance trigger time [14]

From our previous research [14], the critical avoidance
trigger time tc is defined as the last possible time by which
the UAV could escape from a collision conflict.

Suppose ρ is the UAV minimum turning radius. dm is the
safe separation radius between the UAV and obstacle, Figure
5.

As shown in Table I,
−→
U is the location vector of the UAV

and vector
−→
A is the location vector of the obstacle. Where

−→
U = (Ux, Uy, Uz) (21)
−→
A = (Ax, Ay, Az) (22)

Also as claimed before,
−→
Vu is the velocity vector of the

controlled UAV and
−→
Va is the velocity vector of the obstacle

(||
−→
Va|| = 0 for the static obstacle).

−→
Vu = (Vux, Vuy, Vuz) (23)
−→
Va = (Vax, Vay, Vaz) (24)

Therefore, the relative velocity vector and the relative loca-
tion vector are: −→

Vr =
−→
Vua =

−→
Vu −

−→
Va (25)

−→r =
−→
UA =

−→
A −

−→
U (26)
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Use
−→
Vr0 and −→r0 to represent the

−→
Vr and −→r at the time that

UAV detects the obstacle(set t = 0), then the angle between−→
Vr0 and −→r0 is α0. Thus,

α0 = cos−1
−→r0
−→
Vr0

|
−→
r0||
−→
Vr0|

(27)

From Figure 5 [14], the ideal critical avoidance trigger time
is calculated by the following equation:

tc(ideal) =
r0cosα0 −

√
(ρ+ dm)2 − (ρ+ r0sinα0)2

||Vr||
(28)

where

ρ =
|Vr|2

gtanφ
(29)

g is the acceleration of gravity and φ is the maximum
banking angle of each UAV (φ is a fixed value for each UAV).

If we consider the time delay tres associated to the response
of the UAV, the critical time becomes:

tc = tc(ideal)− tres (30)

If there are n multiple obstacles, first calculate the critical
avoidance trigger time tci for each obstacle, and then the
overall trigger time is computed as follows:

tc = tc(ideal)− tres = min(tci)− tres (31)

where i = 1, 2, ...n.

B. Set the sequence of avoidance operation trigger times

After calculating the critical avoidance time tc, the next
step is to set the trigger time. The UAV could choose to
trigger the collision avoidance anytime between 0 and tc. In
our experiments, the test times will be chosen in a uniform
distribution from 0 to tc, as presented in Table II.

TABLE II
SETUP OF THE DIFFERENT AVOIDANCE TRIGGER TIMES

trigger time tt/tc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

For easier visualization of results, results of tt = 0, tt =
0.2tc, tt = 0.5tc, tt = 0.8tc, tt = tc will be presented in the
tables and figures in section IV, including missed waypoints,
path length, space occupation, total cost and the total reward.
The Algorithm 1 explains the processes involved in the trigger
time selection and reward calculation.

IV. SIMULATION RESULTS AND ANALYSIS

Table III displays two scenarios of collision avoidance,
case 1 for three static obstacles and case 2 for two dynamic
obstacles.

For case 1, the UAV detects static obstacles from 70-100
meters away and calculates the critical avoidance time tc = 3s.
(1) If the UAV starts the avoidance operation right away, that is

Algorithm 1 Trigger time selection and reward
Require: necessary data is available for UAV

1: for i← 1 to n do
2: calculate critical trigger time tci for avoidance of each

obstacle using Equation 30.
3: end for
4: Get the overall trigger time tc = min(tci)− tres
5: Set the sequence of avoidance trigger time in an uniform

distribution, tt = 0.1tc, 0.2tc, ...tc
6: Run simulations, get the Costtotal and the Reward using

Equation 7 and 8.
7: Pick up the time topt which has the highest Reward as

the optimal collision avoidance trigger time.

tt = 0, it can avoid the obstacles successfully with 30% missed
waypoints. The path length changed by 37m, the planar air
space affected by the collision avoidance operation was 432
m2 and the UAV flew beyond its airway for 9.49 seconds.
(2) If the UAV starts the avoidance operation at tt = 0.2tc,
tt = 0.5tc, tt = 0.8tc, tt = tc, percentage of missed waypoints
are 20%, 20%, 10%, 10%. The path lengths changed by
33m, 29m, 26m and 23m. The planar airspace affected was
405m2, 370m2, 319m2 and 290m2, respectively. And the
UAV traveled beyond its air corridor by 8.23 seconds, 5.95
seconds, 5.84 seconds and 5.12 seconds. All of the variables
have smaller values (smaller cost) as compared to when the
collision avoidance is triggered at time t = 0. The result of
collision avoidance remains successful.

For case 2, the UAV detects dynamic obstacles from 70-
100 meters away and calculates the critical avoidance time
tc = 1.5s. (1) If the UAV starts the avoidance operation right
away, that is tt = 0, it can avoid the obstacles successfully
with 30% missed waypoints. The path length changed by
35m, the planar air space affected by the collision avoidance
operation was 450 m2 and the UAV flew beyond its airway for
11.05 seconds. (2) If the UAV starts the avoidance operation
at tt = 0.2tc, tt = 0.5tc, tt = 0.8tc, tt = tc, percentage
of missed waypoints are 20%, 10%, 10%, 10%. The path
lengths changed by 32m, 27m, 25m and 20m. The planar
airspace affected was 337m2, 325m2, 287m2 and 256m2,
respectively. And the UAV traveled beyond its air corridor by
8.87 seconds, 7.49 seconds, 7.47 seconds and 5.95 seconds.
All of the variables have smaller values (smaller cost) as
compared to when the collision avoidance is triggered at time
t = 0. The result of collision avoidance remains successful.

It is clear that as the trigger time tt gets closer to the
critical avoidance time tc, the overall cost, including waypoints
missed, additional path, occupied space and the time flying
outside the original lane is decreased. This is further indicated
by the Monte-Carlo simulation results in Table IV.

Table IV summarizes Monte Carlo simulation results for
the success rate of avoiding static and dynamic obstacles and
their corresponding cost. From the results, similar to Table
III, as the trigger time tt gets closer to the critical avoidance
time tc, the overall cost, including waypoints missed, length of
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TABLE III
AVOIDANCE OPERATION COST BY DIFFERENT TRIGGER TIMES

case 1 case 2
Number and type of obstacles 3 static 2 dynamic
Initial distance 70-100 70-100
Initial altitude 550-650 550-650
Speed m/s 0 15-20
Total number of waypoints 10 10
Collision avoidance starts at t = 0
Avoidance success? yes yes
Waypoints missed num 3 3
Waypoint missed percentage 30% 30%
Additional path length /m 37 35
Space occupied /m2 432 350
Time outside airway /s 9.49 11.05
Collision avoidance starts at 0.2tc
Avoidance success? yes yes
Waypoints missed num 2 2
Waypoint missed percentage 20% 20%
Additional path length /m 33 32
Space occupied /m2 405 337
Time outside airway /s 8.23 8.87
Collision avoidance starts at 0.5tc
Avoidance success? yes yes
Waypoints missed num 2 1
Waypoint missed percentage 20% 10%
Additional path length /m 29 27
Space occupied /m2 370 325
Time outside airway /s 5.95 7.49
Collision avoidance starts at 0.8tc
Avoidance success? yes yes
Waypoints missed num 1 1
Waypoint missed percentage 10% 10%
Additional path length /m 26 25
Space occupied /m2 319 287
Time outside airway /s 5.84 7.47
Collision avoidance starts at tc
Avoidance success? yes yes
Waypoints missed num 1 1
Waypoint missed percentage 10% 10%
Additional path length /m 23 20
Space occupied /m2 290 256
Time outside airway /s 5.12 5.95

additional path, occupied space and the time outside its airway
decrease.

In Table IV, the second column depicts the UAV avoiding
a single static obstacle. Single static obstacle avoidance is
a simple scenario, thus under the proper initial detection
distance between the UAV and the obstacle, avoidance success
rate remains approximately 100%. But the costs vary. As the
trigger time tt changes from 0, 0.2tc, 0.5tc to 0.8tc, tc, the
cost, including Costw, CostL, CostS and CostT decreases
monotonously. For example, the cost of length of additional
path CostL decreases from 0.710, 0.633, 0.570 to 0.493 and
0.427. As a result, the total reward calculated from Equation
8 as Psucc/Costtotal, increases from 769, 1123, 1198 to 2127
and 2160, which means choosing a later collision avoidance
trigger time would be better for the UAV.

Now let’s take a look at the fourth column of Table IV, the
UAV avoiding a single dynamic obstacle. The single obstacle
avoidance is not a tough task if the initial detection distance
between the UAV and the obstacle is not a very small margin.
And the success rate remains approximately the same as the

trigger time varies. But the costs vary. As the trigger time tt
changes from 0, 0.2tc, 0.5tc to 0.8tc, tc, the cost, including
Costw, CostL, CostS and CostT decreases monotonously.
For example, the cost of missed waypoints CostW decreases
from 0.316, 0.298, 0.288 to 0.255 and 0.231. As a result, the
total reward calculated from Equation 8 as Psucc/Costtotal,
increases oppositely from 270, 279, 667 to 1000 and 1754,
which means choosing a later collision avoidance trigger time
is better for the UAV.

Next, the analysis of situations for multiple static and
dynamic obstacles, which will be more complex. From Table
IV third column, it is clear that the safety level (avoid-
ance success rate) of multiple static obstacles decreases as
tt increases, which means the failure rate increases. The
total cost Costtotal, composed of missed waypoint Costw,
additional path cost, CostL, space occupied cost CostS
and deviation time CostT decreases. The trajectory of the
above parameter is also shown in Figure 6. The final reward
Reward = Psucc/Costtotal, the changing trend of the reward
is dependent on the decreasing rate of the Psucc and the
Costtotal. For multiple static obstacles, the cost decreasing
speed is greater than success rate decreasing speed. Thus, the
final reward still increases as action trigger time tt approaches
the critical time tc, as Figure 7 presents.

In Table IV, the fifth column describes the collision avoid-
ance experiment for multiple dynamic obstacles. The safety
level (avoidance success rate) of multiple dynamic obstacles
decreases a lot as tt increases, which means the failure rate
increases. The total cost Costtotal, composed of waypoint
missed Costw, additional path cost, CostL, space occupied
cost CostS and deviation time cost CostT decreased. The
trajectory of the above parameter is also shown in the Figure
8. The final reward Reward = Psucc/Costtotal, the changing
trend of the reward is dependent on the decreasing rate of
the Psucc and the Costtotal. For multiple dynamic obstacles,
the situation is totally different from the above three. In the
beginning, the speed at which cost decreases is greater than
the rate at which avoidance success decreases, which increases
the reward, but after the 0.5tt, the success rate decreases fast,
which decreases the reward. Thus, the shape of the reward
here is like a parabola with a vertex as the trigger time tt
approaches the critical time tc, as Figure 9 shows.

Figure 6 presents the Monte-Carlo simulation results of
Table IV third column for UAV avoiding multiple static
obstacles. As the trigger time varies from tt = 0, tt = 0.2tc,
tt = 0.5tc, tt = 0.8tc to tt = tc, the average waypoints missed
are 0.519, 0.444, 0.353, 0.269, 0.226, reducing around 60%
of missed waypoints. The average path increasing proportion
varies from 0.810 to 0.427. The space proportion decreases
from 0.227 to 0.086 while the deviation time proportion
decreases from 0.633 to 0.427. Time, path, space saved are
around 30% to 70%.

In summary, the overall cost decreases, from 0.06 to 0.0034
while the collision avoidance success rate decreases from
99.90% to 92.30% (failure rate increases from 0.1% to 7.7%).
As cost decreases, the safety level also decreases while in-
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TABLE IV
MONTE CARLO SIMULATION STATISTIC RESULTS OF UAV AVOIDING

OBSTACLES BY DIFFERENT TRIGGER TIMES

Num of cases 5000 5000 5000 5000
Num of obs each case single multi single multi
Obstacle type static static dyn dyn
Initial distance /m 100-200 100-200 200-300 200-300
Initial altitude /m 550-650 550-650 550-650 550-650
Average speed m/s 0 0 20-25 20-25
Avoidance starts at t=0
Avoid succ rate Psucc 100% 99.90% 100% 90.00%
Waypoint missed Costw 0.511 0.519 0.316 0.395
Additional path CostL 0.710 0.810 0.440 0.540
Space occupied CostS 0.149 0.227 0.093 0.308
Deviation time CostT 0.025 0.633 0.293 0.733
Total cost Costtotal 0.0013 0.0600 0.0037 0.0470
Total reward Reward 769.2 16.6 270.3 19.2
Avoid starts at 0.2tc
Avoid succ rate Psucc 100% 99.05% 100% 87.17%
Waypoint missed Costw 0.432 0.444 0.298 0.363
Additional path CostL 0.633 0.707 0.443 0.510
Space occupied CostS 0.130 0.192 0.101 0.296
Deviation time CostT 0.024 0.549 0.271 0.592
Total cost Costtotal 0.0009 0.0331 0.0036 0.0237
Total reward Reward 1123.6 29.9 277.8 36.8
Avoid starts at 0.5tc
Avoid succ rate Psucc 100% 97.79% 100% 86.53%
Waypoint missed Costw 0.345 0.353 0.288 0.319
Additional path CostL 0.570 0.593 0.447 0.480
Space occupied CostS 0.108 0.148 0.098 0.256
Deviation time CostT 0.044 0.397 0.122 0.499
Total cost Costtotal 0.0009 0.0122 0.0015 0.0202
Total reward Reward 1198.9 80.2 666.7 42.8
Avoid starts at 0.8tc
Avoid succ rate Psucc 100% 95.65% 100% 81.11%
Waypoint missed Costw 0.271 0.269 0.255 0.299
Additional path CostL 0.493 0.487 0.443 0.487
Space occupied CostS 0.084 0.105 0.096 0.266
Deviation time CostT 0.043 0.389 0.098 0.498
Total cost Costtotal 0.0005 0.0053 0.0010 0.0195
Total reward Reward 2127.7 178.8 1000 41.6
Avoid starts at tc
Avoid succ rate Psucc 100% 92.30% 100% 70.15%
Waypoint missed Costw 0.225 0.226 0.231 0.252
Additional path CostL 0.427 0.430 0.443 0.487
Space occupied CostS 0.072 0.086 0.094 0.229
Deviation time CostT 0.037 0.342 0.060 0.463
Total cost Costtotal 0.0005 0.0034 0.0006 0.0195
Total reward Reward 2160.8 274.4 1754 35.9

creasing the safety level increases the cost. Hence, finding a
point which balances the cost and safety is important. After
applying the reward function Reward = Psucc/Costtotal, we
got Figure 7, which presents the final reward for UAV avoiding
multiple static obstacles with varying trigger time tt. As tt gets
closer to the critical trigger time tc, the total reward increases
from 16.6 to 274.4 monotonously, reaches its max Rmax at tc,
which means tt = tc is the optimal avoidance trigger time for
the UAV. That is because the collision avoidance success rate
Psucc for the static obstacles is decreasing slower than the rate
at which the cost decreases. Thus, the reward is a monotonous
increasing function of tt. Therefore, tc is the right point for
the UAV to start collision avoidance for static obstacles.

Figure 8 shows the Monte-Carlo simulation results of UAV
avoiding multiple dynamic obstacles (TableIV last column).

Fig. 6. Costs of UAV avoiding multiple static obstacles with different
avoidance trigger times

Fig. 7. Success rate, total cost and rewards of collision avoidance when using
different avoidance trigger times for multiple static obstacles

As the trigger time gets from tt = 0, tt = 0.2tc, tt = 0.5tc,
tt = 0.8tc to tt = tc, the proportion of missed waypoints
varies from 0.395 to 0.252, reducing about 40%. The average
proportion of additional path decreases from 0.541 to 0.482.
The proportion of the space affected by the avoidance opera-
tion drops from 0.309 to 0.229 while the deviation time drops
from 0.736 to 0.462.

The overall cost decreases from 0.0470 to 0.0195. Path,
space and overall cost saved are around 40% to 60%. The
success rate also decreases from 90% to 70.15%, meaning
that the failure rate increases from 10% to 29.85%. After
applying the reward function Reward = Psucc/Costtotal,
we got Figure 9. However, different from the Figure 7, as
shown in Figure 9 for the dynamic obstacles, the shape of
reward changes. The total reward, composed of the collision
avoidance success rate and the costs, are not a monotonous
function, it is similar to a parabola, which goes up from 19.2
to 36.8, reaches its peak at 42.8, then decreases to 41.6 and
35.9. That is because both collision avoidance success rate and
the cost decreases as the tt gets closer to tc. After tt = 0.5tc,
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Fig. 8. Different cost of UAV avoiding multiple dynamic obstacles with
different avoidance trigger times

the success rate has a higher decreasing speed than at which
the cost decreases. So the reward function reaches its peak
when avoidance action starts at time tt = 0.5tc. Thus, 0.5tc is
the optimal time point for the UAV to start avoidance action for
dynamic obstacles if 85% to 90% collision avoidance success
rate is acceptable.

Fig. 9. Success rate, total cost and rewards of collision avoidance when using
different avoidance trigger times for multiple static obstacles

V. CONCLUSION AND FUTURE WORK

In summary, this paper provides the analysis of cost and
success rate for UAV collision avoidance performance, as well
as determination of the proper time at which the UAV should
start the avoidance maneuver to get the most efficient results.
Around 40% to 60% time and other relative cost is reduced
while keeping the collision avoidance success rate, which is
promising for the real time applications. In addition, the proper
trigger time point determined from large amount of Monte-
carlo simulation results can be used for UAV future machine
learning training.

In addition, the selection of the different trigger times not
only could schedule the tasks for multiple UAVs [19], but also
could let the UAV classify the hazard level of the obstacles,
breaking the large amount of obstacles into several smaller
groups according to the critical avoidance time, and then avoid
them in sequence, which could solve the difficult simultaneous
collision avoidance problem.
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