A Contract-Based Methodology
for Aircraft Electric Power System Design

Pierluigi Nuzzo, Huan Xu, Necmiye Ozay, John B. Finn,
Alberto L. Sangiovanni-Vincentelli, Richard M. Murray, Alexandre Donz¢, Sanjit A. Seshia

Abstract—In an aircraft electric power system, one or more
supervisory control units actuate a set of electromechanical
switches to dynamically distribute power from generators to
loads, while satisfying safety, reliability and real-time perfor-
mance requirements. To reduce expensive re-design steps, this
control problem is generally addressed by minor incremental
changes on top of consolidated solutions. A more systematic
approach is hindered by a lack of rigorous design methodologies
that allow estimating the impact of earlier design decisions
on the final implementation. To achieve an optimal imple-
mentation that satisfies a set of requirements, we propose a
platform-based methodology for electric power system design,
which enables independent implementation of system topology
(i.e. interconnection among elements) and control protocol by
using a compositional approach. In our flow, design space
exploration is carried out as a sequence of refinement steps
from the initial specification towards a final implementation by
mapping higher-level behavioral and performance models into a
set of either existing or virtual library components at the lower
level of abstraction. Specifications are first expressed using the
formalisms of linear temporal logic, signal temporal logic and
arithmetic constraints on Boolean variables. To reason about
different requirements, we use specialized analysis and synthesis
frameworks and formulate assume-guarantee contracts at the
articulation points in the design flow. We show the effectiveness
of our approach on a proof-of-concept electric power system
design.

I. INTRODUCTION

The advent of high capability, reliable power electronics
together with powerful embedded processors has enabled an
increasing amount of “electrification” of vehicles such as cars
and aircraft in recent years [1], [2]. Hydraulic, pneumatic
and mechanical systems are being replaced by cyber-electrical
components that increase the overall system efficiency [3].
However, the increased use of electrically-powered elements
poses significant challenges to the aircraft electric power
system in terms of the reliability of electrical power generation
and distribution while satisfying safety requirements.

A severe limitation in common design practice is the lack of
formalized specifications. System requirements are predomi-
nantly written in text-based languages that are not suitable for

P. Nuzzo, J. B. Finn, A. L. Sangiovanni-Vincentelli, A. Donzé and S. A. Se-
shia are with the University of California at Berkeley, Department of Electrical
Engineering and Computer Sciences, Cory Hall 1770, Berkeley, CA 94720.
E-mail: nuzzo@eecs.berkeley.edu.

H. Xu is with the University of Maryland, Institute for Systems Research
and Aerospace Engineering, College Park, MD.

N. Ozay is with the University of Michigan, Department of Electrical
Engineering and Computer Science, 4229 EECS Building, Ann Arbor, MI
48109.

R. M. Murray is with the California Institute of Technology, Engineering
and Applied Science Department, Pasadena, CA.

mathematical analysis and verification. Assessing system cor-
rectness is then left for simulations and prototype tests later in
the design process, when modifications are significantly more
expensive. Additionally, the inability to rigorously model the
interactions among heterogeneous components and between
the physical and the cyber sides of the system poses a serious
obstacle. Thus, the traditional heuristic design process based
on text-based requirement capture and designers’ experience
leads to implementations that are inefficient and sometimes
do not even satisfy the requirements, yielding long re-design
cycles, cost overruns and unacceptable delays.

We propose instead to carry out a rigorous design process
that includes allocation of the requirements to the components
and early validation of design constraints. By following the
platform-based design paradigm [4], we proceed by sub-
sequent refinement of design requirements using a library
of available components. To perform this task, we define
convenient abstractions for system exploration and composi-
tional synthesis of system topology (interconnection among
the various components) and control. In particular, we build a
rich, multi-view set of component models that can be used by
different, domain-specific analysis, synthesis and verification
frameworks. We first synthesize an electric power system
topology from system requirements formalized as arithmetic
constraints on Boolean variables. For the given topology,
we translate the requirements into temporal logic formulas,
by which we synthesize and verify control protocols. To
reason about different requirements in a compositional way,
we use the concept of contracts [5] that formalize the notion
of interfaces between models and tools in the design flow.
A few theoretical results (Theorem III.1, Propositions VI.1
and VI.2) show how contracts can offer a natural framework
to reason about distributed control architectures as well as the
heterogeneous interface between the controller and its plant.

Our design methodology builds on a number of results that
have opened the way for a more structured approach to the
design of aircraft electric power systems. The adoption of
model-based development and simulation for the analysis of
aircraft performance and power optimization has already been
advocated in [6], [7]. In the context of the More Open Electri-
cal Technologies (MOET) project [2], a set of model libraries
have been developed using the Modelica language [8] to sup-
port “more-electric” aircraft simulation, design and validation.
Simulation is used for electric power system performance
verification (e.g., stability and power quality) at the network
level, by leveraging models with different levels of complexity
to analyze different system properties, and validated with real

equipment measurements. However, design space exploration,
optimization and analysis of faulty behaviors in these models
can still become computationally unaffordable unless proper
levels of abstraction are devised, based on the goals at each
design step.

A library-based approach to instantiate, analyze and verify
a system design was also adopted in [9], [10], within the
META research program, with the aim to compress the product
development and deployment timeline of defense systems.
A simulation framework based on Modelica was developed
to enable exploration of architectural design decisions, while
a language based on SysML [11] was proposed to enable
semantically robust integration of models, analytical methods
and results provided by other domain specific languages and
tools [12]. Such integration language incorporates assume-
guarantee contracts to formalize system requirements and
enable the generation of monitors. In this paper, we further
extend the use of assume-guarantee contracts as a design aid
in combination with platform-based design to yield system
synthesis and optimization in addition to system simulation
and verification.

An optimization-oriented power system design methodology
following the platform-based paradigm was proposed in [13]
where initial specifications are refined and mapped to the
final implementation in four steps. At each step, a binary
optimization problem is formulated to derive a class of can-
didate implementations for the next exploration step. The
methodology deals with how to select the power generators
and synthesize the electric power system topology. In this
paper, we extend the flow in [13] to enable synthesis of electric
power system topology and control, subject to heterogeneous
sets of system requirements that are not always approximated
by binary or mixed integer-linear constraints. To perform
automatic synthesis of control protocols, we build on recent
works on formal synthesis of aircraft vehicle management
systems [14], distributed control synthesis [15], and reactive
synthesis for electric power systems [16]. In particular, we ex-
press system specifications in linear temporal logic (LTL) [17],
[18] and leverage a combination of tools from the computer
science and formal methods domains.

The remainder of the paper is organized as follows. After
a brief description of a typical electric power system and its
design challenges in Section II, we provide some background
on contract-based design and control synthesis in Section III.
Section IV summarizes our electric power system design
methodology while Section V and Section VI provide details
on topology and control design. Section VII reports results
from the application of our methodology to a prototype electric
power system design, and is followed by concluding remarks
in Section VIII.

II. THE AIRCRAFT ELECTRIC POWER SYSTEM

Figure 1 illustrates a sample architecture for power gener-
ation and distribution in a passenger aircraft in the form of a
single-line diagram (SLD) [1], a simplified notation for three-
phase power systems. Typically, aircraft electric power systems
consist of generation, primary distribution and secondary dis-
tribution sub-systems. In this paper, we focus on the primary

r”i””””i’ ”””” H’””’ ”””””””””””“r’”””i ”””” i il
LT L A T L T
! ["HvacBus1 | b+ HvACBus2 | | HVACBus3 }H | HVACBus4 | !
| T T T T I I |

'
R UL 1 NSRS NI MR B | AN PSR S R

I I
L T
F—
,,,,,,,,,,,,,,,,,, A Supasge N N
j ,,,,,,,,,,,,, ,,,,,,,,,,,,, [T
% [Lvizssssujw }—Hﬂ—{ L\TESSTZ] i
i g o]
4—{ Eocauss H }—3;% LVDC Bus& %

e/ W '

Fig. 1. Single-line diagram of an aircraft electric power system adapted from
a Honeywell, Inc. patent [19].

power distribution system, which includes the majority of the
supervisory control logic.

A. Components

The main components of an electric power system are
generators, contactors, buses, and loads. Primary generators
are connected to the aircraft engine and can operate at high
or low voltages. Auxiliary generators are mounted atop an
auxiliary power unit (APU). The APU is normally used on
ground (when no engines are available) to provide hydraulic
and electric power, but can also be used in flight when
one of the primary generators fails. With a small abuse of
notation, we hereafter refer to auxiliary generators themselves
as APUs. Batteries are primarily used at start-up and in case
of emergency. AC and DC buses (both high and low-voltage)
deliver power to a number of loads. Buses can be essential or
non-essential. Essential buses supply loads that should always
be powered, while non-essential ones supply loads that may
be shed in the case of a fault or limited power capacity.

Contactors are electromechanical switches that connect
components, and therefore determine the power flow from
sources to loads. They are configured to be open or closed
by one or multiple controllers (not shown in Fig. 1), denoted
as Bus Power Control Units (BPCU).

Loads include subsystems such as lighting, heating, avionics
and navigation. Bus loads also include power conversion
devices: Rectifier units convert AC power to DC power, while
AC transformers (ACTs) step down a high-voltage to a lower
one, Transformer Rectifier Units (TRUs) both decrease the
voltage level and convert it from AC to DC.

B. System Description

The main AC power sources at the top of Fig. 1 include two
low-voltage generators, two high-voltage generators, and two
APU-mounted auxiliary generators. Each engine connects to

a high-voltage AC (HVAC) generator (L1 and R1) and a low-
voltage AC (LVAC) generator (L2 and R2). Panels, denoted as
dashed square boxes, represent groups of components that are
physically separated on the aircraft. The three panels below the
generators include the HVAC buses, which can be selectively
connected to the HVAC generators, to the auxiliary generators,
and to each other via contactors, denoted by double bars.

Four rectifier units are selectively connected to buses as
HVAC loads. The two panels below the high-voltage DC
(HVDC) buses include the LVAC subsystem. A set of AC
transformers (ACTs) convert HVAC power to LVAC power
and are connected to four LVAC buses. LVAC ESS Bus 3 and
LVAC ESS Bus 4 are essential and are selectively connected
to the two low-voltage generators. The LVAC essential buses
are also connected to rectifier units, and thus to low-voltage
DC (LVDC) power. The LVDC subsystem also contains two
batteries. Power can be selectively routed directly from the
HVAC bus to the LVDC buses 3 and 4 using TRUs.

One or more bus power control units use sensors (which are
not depicted in Fig. 1) to measure physical quantities, such as
voltages and currents, and control the state (open or closed) of
the contactors, to dynamically reconfigure the system based on
the status and availability of the power sources. For the rest of
the paper, we denote this centralized or distributed supervisory
control unit as BPCU.

C. System Requirements

Given a set of loads, together with their power and reliability
requirements, the goal is to determine the system’s architecture
and control such that the demand of the loads is satisfied for all
flight conditions and a set of predetermined faults. To better
formalize this design objective, we begin with a qualitative
analysis of the main system requirements, by categorizing
them in terms of safety and reliability requirements. For each
of these categories, we provide a few examples that serve as
a reference for the rest of the paper.

Safety specifications constrain the way each bus must be
powered to avoid loss of essential features, and the maximum
time interval allowed for power shortages. For instance, to
avoid generator damage, we proscribe AC sources to be paral-
leled, i.e. no AC bus can be powered by multiple generators at
the same time. Moreover, we refine the definition of essential
loads and buses (such as flight-critical actuators) provided
above by requiring that they be never unpowered for more
than a specified time £,

Reliability specifications describe the bounds on the failure
probabilities that can be tolerated for different portions of
the system. Based on its failure modes, every component is
characterized by a failure rate. A failure rate of A indicates
that a failure occurs, on average, every 1/\ hours. For a
given mission profile, failure rates can be translated into
failure probabilities so that system reliability specifications
are also expressed in terms of the failure probabilities of the
components. Based on the component failure rates, a typical
specification would require that the failure probability for an
essential load (i.e., the probability of being unpowered for
longer than t,,,,) be smaller than 10~ per flight hour. The

actual probability value depends on the load criticality [1]. In
our example, both the electric power system topology and the
controller should be designed to accommodate any possible
combination of faults potentially causing the failure of an
essential component, and having a joint probability larger than
10~ per flight hour.

III. CONTRACT-BASED DESIGN
OF CYBER-PHYSICAL SYSTEMS

Inspired by recent results on assume-guarantee compo-
sitional reasoning and interface theories in the context of
hybrid systems and software verification, our methodology
is based on the use of assume-guarantee contracts for cyber-
physical systems [5]. Informally, contracts mimic the thought
process of a designer, who aims at guaranteeing certain
performance figures for the design under specific assumptions
on its environment. The essence of contracts is, therefore, a
compositional approach, where design and verification com-
plexity is reduced by decomposing system-level tasks into
more manageable subproblems at the component level, under
a set of assumptions. System properties can then be inferred
or proved based on component properties. In this respect,
contract-based design can be a rigorous and effective paradigm
while dealing with the complexity of modern system design,
and has been successfully applied to other embedded system
domains, such as automotive applications [20] and mixed-
signal integrated circuits [21].

A. Components

We summarize the main concepts behind contract-based
design starting with the notion of components. A summary
of the notation used in this Section and in the rest of the
paper is given in Table L.

A component M can be seen as an abstraction, a hierarchical
entity representing an element of a design, characterized by
the following component attributes:

o a set of input variables U € U, output variables Y €)/,
and internal variables (including state variables) X € &X’;
a set of configuration parameters k € K, and a set
of input, output and bidirectional ports A € A for
connections with other components;

o a set of behaviors, which can be implicitly represented by
a dynamic behavioral model F(U,Y, X, k) = 0, uniquely
determining the value of the output and internal variables
given the one of the input variables and configuration
parameters. We assume that components can respond to
every possible sequence of input variables, i.e., they are
receptive to their input variables. Behaviors are generic,
and could be continuous functions that result from solving
differential equations, or sequences of values or events
recognized by an automata model;

« a set of non-functional models, i.e. maps that allow com-
puting non-functional properties of a component corre-
sponding to particular valuations of its input variables and
configuration parameters. Examples of non-functional
maps include the performance model P, computing a
set of performance figures by solving the behavioral

model, or the reliability model R, providing the failure

probability of a component.
Components can be connected together by sharing certain
ports under constraints on the values of certain variables. In
what follows, we use variables to denote both component
variables and ports. Moreover, components can be hierarchi-
cally organized to represent a system at different levels of
abstraction. Given a set of components at level /, a system can
then be composed by parallel composition and represented as
a new component at level /+1. At each level of abstraction,
components are also capable of exposing multiple, comple-
mentary views, associated to different concerns (e.g. safety,
performance, and reliability), which can be expressed via
different formalisms and analyzed by different tools.

A component may be associated to both implementations
and contracts. An implementation M 1is an instantiation of
a component M for a given set of configuration parameters.
In what follows, we also denote with M the set of all its
behaviors.

B. Contracts

A contract C for a component M is a pair of assertions
(A, G), called the assumptions and the guarantees. An asser-
tion H represents a specific set of behaviors over variables that
satisfies H. Therefore, operations on assertions and contracts
are set operations. An implementation M satisfies an assertion
H whenever M and H are defined over the same set of
variables and all the behaviors of M satisfy the assertion,
ie. when M C H. The set of all the legal environments
for C collects all implementations F such that £ C A. An
implementation of a component satisfies a contract whenever
it satisfies its guarantee, subject to the assumption. Formally,
M NA C G, where M and C have the same variables.
We denote such a satisfaction relation by writing M | C.
Similarly, we relate a legal environment £ to a contract C by
the satisfaction relation E = C.

Any implementation M of a component such that M C
G U —A, where —A is the complement of A, is also an
implementation for C. In general, My = G U —A is the
maximal implementation for C. Two contracts C and C’
with identical variables, identical assumptions, and such that
G'U—A = GU—A, possess identical sets of implementations.
Such two contracts are then equivalent. Therefore, any contract
C = (A,G) is equivalent to a contract in saturated form
(A,G"), which also satisfies G’ O —A, or, equivalently,
G’ U A = True, the true assertion. To obtain the saturated
form of a contract, it is enough to take G' = G U —A.

Contracts associated with different components can be
combined according to different rules. Similar to parallel
composition of components, parallel composition of contracts
can be used to construct composite contracts out of simpler
ones. Let C; = (A1,G1) and Cy = (As, G2) be contracts in
saturated form, then the assumptions and the guarantees of the
composite C; ® Co can be computed as follows [20]:

A= (A1 N A)U~(G1NGo), (1)

G =G1NGs. 2)

The composite contract must clearly satisfy the guarantees
of both. Moreover, since the environment should satisfy all
the assumptions, we should expect that the assumptions of
each contract would also combine by conjunction. In general,
however, part of the assumptions A; will be already satisfied
by composing C; with Cy, which acts as a partial environment
for C;. Therefore, G2 can relax the assumptions A;, and vice-
versa, which motivates equation (1). To use equation (1) and
equation (2), the behaviors related to the original contracts
need to be extended to a common set of variables. Such an
extension, which is also called alphabet equalization, can be
achieved by an operation of inverse projection [20].

Even if they need to be satisfied simultaneously, multiple
views of the same component do not generally compose
by parallel composition. Therefore, the conjunction (A\) of
contracts can also be defined so that if M = C; A Co, then
M = Cy and M = Cs. Contract conjunction can be computed
by defining a preorder on contracts, which formalizes a notion
of refinement. We say that C refines C’, written C < C' (with
C and C’ both in saturated form), if A DO A’ and G C G'.
Refinement amounts to relaxing assumptions and reinforcing
guarantees, therefore strengthening the contract. Clearly, if
M E C and C = C’, then M [= C'. On the other hand, if
E Eg C', then E =g C. With the given ordering, we can
compute the conjunction of contracts by taking the greatest
lower bound of C; and Cs. For contracts in saturated form, we
have

C1LACo = (AU As, G1 N Ga), 3)

i.e. conjunction of contracts amounts to taking the intersec-
tion of the guarantees and the union of the assumptions.
Conjunction can be used to compute the overall contract for
a component starting from the contracts related to multiple
views (concerns, requirements) in a design.

In addition to satisfaction and refinement, consistency and
compatibility are also relations involving contracts. Techni-
cally, these two notions refer to individual contracts. A contract
is consistent when the set of implementations satisfying it is
not empty, i.e. it is feasible to develop implementations for it.
For contracts in saturated form, this amounts to verifying that
G # 0. C is compatible if there exists a legal environment
E for C, ie. if and only if A # (). The intent is that a
component satisfying contract C can only be used in the
context of a compatible environment. In practice, however,
violations of consistency and compatibility occur as a result of
a parallel composition, so that we can refer to the collection of
components forming a composite contract as being consistent
or compatible.

C. Platform-Based Design and Contracts

We use contracts in the context of platform-based design [4],
a paradigm that allows reasoning about design in a structured
way. In platform-based design, design progresses in precisely
defined abstraction levels; at each level, functionality (what the
system is supposed to do) is strictly separated from architec-
ture (how the functionality can be implemented). Differently
than model-based development, platform-based design consists

of a meet-in-the-middle approach where successive top-down
refinements of high-level specifications across design layers
are mapped onto bottom-up abstractions and characterizations
of potential implementations. Each layer is defined by a
design platform, which is a library (collection) of components,
models, representing functionality and performance of the
components (as detailed in Section III-A), and composition
rules.

In this context, contracts can play a fundamental role in:
(i) determining valid compositions so that when the design
space is explored, only legal (i.e. satisfying the composition
rules) compositions that are compatible (i.e. satisfying the
contracts) are taken into consideration; (ii) guaranteeing that
a component at a higher level of abstraction is an accurate
representation of a lower level component (or aggregation of
components); (iii) checking that an architecture platform is
indeed a correct refinement of a specification platform, and
(iv) formalizing top-level system requirements.

Since compatibility is assessed among components at the
same abstraction layer, the first category of contracts is de-
noted as horizontal contracts. If an environment violates a
horizontal contract, it cannot host any of its implementations.

However, checking horizontal contracts is not sufficient,
in general, to guarantee correct implementations. When an-
alyzing the behavior of complex cyber-physical systems, sim-
plified macro-models can be used to capture the relevant
behavior of the components at higher levels of abstraction.
Therefore, guarantees should also be provided on the accuracy
of the macro-models with respect to models at lower levels
of abstraction. These guarantees are captured via bottom-up
vertical contracts. On the other hand, vertical contracts can
also be used to encode top-down requirements that system
architects introduce to craft the behavior of a chosen architec-
ture according to the desired functionality. The above set of
constraints can be expressed using top-down vertical contracts.
They are used to ensure that an implementation is correct, by
checking that the architecture platform is a refinement of the
specification platform.

To partition system specifications, we identify which entity
is responsible for a set of requirements, and which ones are
just indirectly affected. By assigning information about re-
quirements to components, we make it explicit what each com-
ponent guarantees and what it assumes about its environment.
Both of these aspects determine the top-down vertical contract
for the component. If the assumptions are satisfied, then the
component specification can be developed independently of
other subsystems. In Section IV, we exploit this concept to
independently develop the electric power system topology and
its control protocol.

To formulate system and component requirements as con-
tracts, we adopt different formalisms based on the compu-
tational models used to represent the components and the
tools used to analyze and synthesize them. Example of for-
malisms include automata or temporal logic constructs (e.g.
used for safety requirements), probabilistic constraints (e.g.
used for reliability requirements), linear arithmetic constraints
on Boolean variables (e.g. used for connectivity requirements),
integro-differential equations, and linear or nonlinear con-

straints on real numbers (e.g. used for real-time require-
ments). In what follows, we review the formalisms adopted
in Section VI for the analysis and synthesis of reactive con-
trollers in a contract-based framework.

D. Requirement Formalization

We use two formal specification languages, namely, linear
temporal logic (LTL) and signal temporal logic (STL), partic-
ularly suitable for capturing system and component require-
ments and reasoning about the correctness of their behaviors.
As such, these languages will be used for defining contracts
for control design.

1) Linear Temporal Logic: Temporal logic is a branch of
logic that incorporates temporal aspects in order to reason
about propositions in time, and was first used as a specification
language by Pnueli [22]. In this section, we consider a version
of temporal logic called linear temporal logic (LTL), whose
formal semantics can be found in [23]. While in contract-based
design the component is regarded as the fundamental element
of a design, and systems are denoted as interconnections of
components, as we describe the basics of LTL, we prefer
to adhere to the classical terminology, which is historically
consolidated [23], and define design abstractions in terms of
systems.

Definition 1: A system consists of a set § of variables. The
domain of 8, denoted by dom(8), is the set of valuations of
3.

Definition 2: An atomic proposition is a statement on
system variables that has a unique truth value (True or False)
for a given value s. Let s € dom(8) be a state of the system
(i.e., a specific valuation of its variables) and p be an atomic
proposition. Then s |= p if p is True at the state s. Otherwise,
s p.

LTL also includes Boolean connectors such as negation (—),
disjunction (V), conjunction (A), material implication (—),
and two basic temporal modalities, next (O) and until (U).
By combining these operators, it is possible to specify a wide
range of requirements. Given a set AP of atomic propositions,
LTL formulas are formed according to the following grammar:

w:=True |p| ¢ | pi1Ap2|O@l o1l ps

where p € AP. Formulas involving other operators, including
eventually () and always ((J), can be derived from these basic
ones.

LTL formulas over AP are interpreted over infinite se-
quences of states. In the LTL abstraction, we denote such a
sequence as a behavior of the system. Let 0 = sgs1s2... be
a behavior and ¢ be an LTL formula. We say that ¢ holds at
position ¢ > 0 of o, written s; |= ¢, if and only if ¢ holds for
the remainder of the sequence starting at position ¢. Then, a
sequence o satisfies ¢, denoted by o |= ¢, if so | ¢. Let &
be the collection of all sequences o such that ¢ € ¥. Then,
a system composed of the variables S is said to satisfy ¢,
written X |= ¢, if all sequences satisfy (.

2) Signal Temporal Logic: LTL allows formal reasoning
about temporal behaviors of systems with Boolean, discrete-
time signals (variables) or sequences of events. To deal with

dense-time real signals and hybrid dynamical model that mix
the discrete dynamics of the controller with the continuous
dynamics of the plant, several logics have been introduced over
the years, such as Timed Propositional Temporal Logic [24],
and Metric Temporal Logic [25]. Signal Temporal Logic
(STL) [26] has been proposed more recently as a specifi-
cation language for constraints on real-valued signals in the
context of analog and mixed-signal circuits. In this paper, we
refine LTL system requirements into constraints on physical
variables (e.g. voltages and currents) expressed using STL
constructs. Then, we monitor and process simulation traces to
verify constraint satisfaction, while optimizing a set of design
parameters.

For a hybrid dynamical model, we define a signal as a
function mapping the time domain T = Ry to the reals
R. A multi-dimensional signal q is then a function from T
to R™ such that V¢ € T, q(t) = (q1(t), -+, qn(t)), where
gi(t) is the i-th component of vector g(t). It is convenient
to represent the behavior of the system’s variables over time
using multi-dimensional signals. Therefore, we assume that
a hybrid system behavioral model F (e.g. implemented in
a simulator) takes as input a signal w(t) and computes an
output signal y(¢) and an internal signal x(t) such that
F(u(t),y(t), z(t), k) = 0, where k is a given vector of sys-
tem configuration parameters. A collection of signals resulting
from a simulation of the system is a frace, which can also
be viewed as a multi-dimensional signal. A trace s(t) that
includes all the system input, output and internal signals can
also denote a system behavior.

In STL, constraints on real-valued signals, or predicates, can
be reduced to the form p = g(q) ~ m, where g is a scalar-
valued function over the signal g, ~€ {<,<, > >, = #},
and 7 is a real number. As in LTL, temporal formulas are
formed using temporal operators, always, eventually and until.
However, each temporal operator is indexed by intervals of the
form (a, b), (a,], [a,b), [a,b], (a,00) or [a, o), where each of
a, b is a non-negative real-valued constant. If [is an interval,
then an STL formula is written using the following grammar:

p=True | p|=p| @1 ANpa | p1Urpz

The always and eventually operators are defined as spe-
cial cases of the until operator as follows: ;o £ ~O g,
Or¢ = Trueld; . When the interval I is omitted, we use
the default interval of [0, +00).

The semantics of STL formulas are defined informally as
follows. The signal q satisfies ;1 = g(q) < 2 at time ¢ (where
t > 0), written (q,t) = u, if g(qg(t)) < 2. It satisfies ¢ =
Ojo,2) (¢ > —1), written (q,t) |= ¢, if for all time 0 <t < 2,
q(t) > —1. The signal q; satisfies ¢ = Oy 9yq1 > 0.4 iff there
exists time ¢ such that 1 < ¢ < 2 and ¢(t) > 0.4. The
two-dimensional signal ¢ = (¢1, ¢2) satisfies the formula ¢ =
(q1 > 10) Upz.3,4.5) (g2 < 1) iff there is some time ¢, where
2.3 <tg < 4.5 and ¢a2(tp) < 1, and for all time ¢ in [2.3,tp),
q1(t) is greater than 10. We write ¢ = ¢ as a shorthand of
(q,0) = ¢. Formal semantics can be found in [26].

Parametric Signal Temporal Logic (PSTL) is an extension of
STL introduced in [27] to define template formulas containing
unknown parameters. Syntactically speaking, a PSTL formula

TABLE I
NOTATION

Platform Components and Contracts

72]

ymbol

Definition

”kx%<:q§
-
C
».<
C
B

U
Q
3
~
()
=

GE>RI KH®

U,Y,X,k)=0

Generic platform component
Input variable set

Input variable domain

Output variable set

Output variable domain

Internal (and state) variable set
Internal variable domain
Component (system) variable set
Component (system) variable domain
Configuration parameter set
Configuration parameter domain
Port set

Port domain

Behavioral model

P Performance model (map)

R Reliability model (map)

M Implementation (and set of its behaviors)
C=(AG) Contract (assumptions, guarantees)

E Set of legal environments for C

Discrete Event (LTL) Abstraction

Definition

L MP
SE:
3 e

Generic system (and set of its behaviors)
System variable set
System variable domain

s System state
o = 80S182 System behavior
& Environment variable set
&, dom(€) Environment variable domain
e Environment variable valuation
D Controlled variable set
D, dom(D) Controlled variable domain
d Controlled variable valuation
Crrr = LTL contract
= (e, Pe = ©s)

Hybrid Model (STL) Abstraction
Symbol Definition
u(t) Input signal
y(t) Output signal
z(t) Internal (state) signal
s=(u,y,x) System trace or behavior

K

?(u7 y7 w? ,Q) = 0
CsrL =

:, (pe, pe — 903)

LrL —, ,
= (Pe, o = Pls)

Configuration parameter vector
Behavioral model
STL contract

LTL contract refined into STL

is an STL formula where numeric constants, either in the con-
straints given by the predicates x or in the time intervals of the
temporal operators, can be replaced by symbolic parameters.
These parameters are divided into two types:

o A scale parameter 7 is a parameter appearing in predicates
of the form p = g(q) ~ m,

o A time parameter 7 is a parameter appearing in an interval
of a temporal operator.

An STL formula is obtained by pairing a PSTL formula
with a valuation function that assigns a value to each symbolic
parameter. For example, consider the PSTL formula (7, 7) =
D[07T]q > m, with symbolic parameters 7 (scale) and 7 (time).
The STL formula Ujg 10)¢ > 1.2 is an instance of ¢ obtained
with the valuation w = {7 — 10, 7+ 1.2}.

E. Reactive Control Synthesis

Reactive systems are systems that maintain an ongoing
relation with their environment by appropriately reacting to
it. The controllers that regulate the behavior of such systems
are called reactive controllers.

A control system is a composition of a physical plant,
including sensors and actuators (e.g., an electric power system
topology with fault sensors and contactors), and an embedded
controller that runs a control protocol (control logic) to restrict
the behaviors of the plant so that all the remaining behaviors
satisfy a set of system specifications. System specifications
can be expressed as a contract C = (A, &), where, roughly
speaking, assumptions A encode the allowable behaviors of
the environment the control system operates in, and guarantees
G encode the system requirements.

The synthesis of reactive controls can then be interpreted
in terms of assume-guarantee contracts. Given the system
contract C, control synthesis finds a control logic that, when
implemented, ensures that the system satisfies C; or declares
that no such logic exists. It is possible to extend this idea
to distributed control architectures. In distributed synthesis,
different control subsystems can be composed if their contracts
are compatible. Hence, the goal of distributed synthesis is
to simultaneously refine a system contract into compatible
horizontal contracts for the components (i.e., subsystems), and
to find the control logics that realize those contracts.

1) Reactive Synthesis from LTL Specifications: Let & and D
be sets of environment and controlled variables, respectively.
Let s = (e,d) € dom(&) x dom(D) be a state of the system.
Consider an LTL specification ¢ of assume-guarantee form

P = (e = ¢s), @)

where ¢, characterizes the assumptions on the environment
and ¢, characterizes the system requirements. The synthesis
problem is concerned with constructing a control protocol (a
partial function f : (sps1...St—1,et) — d;) which chooses
the move of the controlled variables based on the state
sequence so far and the behavior of the environment so that
the system satisfies ¢, as long as the environment satisfies
we. If such a protocol exists, the specification ¢ is said to be
realizable. Reactive synthesis can then be viewed as a two-
player game between an environment that attempts to falsify
the specification in equation (4) and a controlled plant that
tries to satisfy it.

For general LTL, the synthesis problem has a doubly
exponential complexity [28]. However, a subset of LTL,
namely generalized reactivity (1) (GR(1)), generates problems
that can be solved in polynomial time (i.e., polynomial in
|dom(€) x dom(D)|, the number of valuations of the variables
in € and D) [29]. GR(1) specifications restrict ¢, and @; to
take the following form, for a € {e, s},

Pa = Pigie N /\ et A /\ 0%¥3 i
i€l el

where ¢ is a propositional formula characterizing the initial
conditions; ¢f, are transition relations characterizing safe,
allowable moves and propositional formulas characterizing
invariants; % ; are propositional formulas characterizing states

that should be attained infinitely often; I{* and I3 are index
sets enumerating formulas 7 ; and ¢5;, respectively.

Given a GR(1) speciﬁcation; there are game solvers and dig-
ital design synthesis tools that generate a finite-state automaton
that represents the control protocol for the system [30], [31].

2) Distributed Synthesis: To provide an inherent level of
redundancy for system reliability, distributed control archi-
tectures are increasingly being adopted in modern aircraft
electric power systems, thus motivating the extension of re-
active synthesis techniques to the design of distributed con-
trollers. Given a global specification and a system composed
of subsystems, distributed synthesis proceeds by first finding
local specifications for each subsystem, and then synthesizing
local controllers for these subsystems separately. If the local
specifications satisfy certain conditions, it can be shown that
the local controllers realizing these local specifications can be
implemented together and the overall system is guaranteed
to satisfy the global specification, as detailed in [15]. We
describe below a special case of distributed architecture, i.e.
a serial interconnection of controllers, which is used in the
design in Section VII-B2 to synthesize controllers for AC and
DC subsystems separately. The following theorem is based
on a result that was first reported in [15]. We introduce here
a new proof that shows how contracts can offer a rigorous
and effective framework to reason about distributed control
architectures in a compositional manner.

Theorem III.1. Given

o a system characterized by a set S = D U & of variables,
where D and & are disjoint sets of controllable and
environment variables,

o its two subsystems with variables 8 = D1U& and 85 =
DoUEs, where for each i € {1,2}, D; and &; are disjoint
sets of controllable and environment variables for the it"
subsystem, D1 and Do are disjoint, and D = Dy U Do,

e a set J of pairs of variables representing the intercon-
nection Sstructure, that is, for a serial interconnection,
J = {(01,i2)|01 € 0, C (@1 U 81),i2 e I, C 82},
where for all (0,1) € J, 0 =1,

e a global specification ¢ : . — @s, and two local
specifications ©1: e, — Qs and Y21 Pe, — Ps,,
where pe, Qe Peys Psr Psy» and s, are LTL formulas
containing variables only from their respective sets of
environment variables &, &1, £ and system variables S,
81, 82,‘

if the following conditions hold:

1) any behavior that satisfies p. also satisfies (pe, N Pe,),
2) any behavior that satisfies (ps, N ps,) also satisfies @s,
3) there exist two controllers that make the local specifi-
cations (pe, — ©s,) and (Pe, — ps,) true under the
interconnection structure J;
then, implementing the two controller together leads to a
controller that satisfies the global specification ¢, — @s.

Proof. The conditions on D, Dy, Do ensure that the two
controllers are composable, i.e. they do not try to control the
same output (controllable) variables. We first derive contracts
from global and local specifications, by defining the following

sets of behaviors in terms of assumptions and guarantees:

A={o:0kv}; Ai={o:0F ¢}
G={0:0F(pc = ps)}; Gi={0:0F (¢e; = vs.)};
A'={0:0F (¢e; N pes) };

G ={0:0 = ((¢e; N @ey) = (05, A@sy))}

We immediately observe that A’ = A; N Ay while G’ D
(G1 N G3). Now, let C = (A, G) be the global contract and
C1 = (A1,G1), C3 = (A2,G2) the local contracts, all in
saturated form. Clearly, for any implementation M;, M; = C;
if and only if its set of behaviors oy, C G, i.e. op, E @is
after alphabet equalization. Moreover, because any implemen-
tations M7 and Ms of C; and Cy are composable, contract
composition using equations (1) and (2) is well defined and
the composition M; x M, (under the interconnection J) is an
implementation of C; ® Cy (under the interconnection J).
We now prove that

Ci®Cy =C,

ie., C1 ® Co = (A12,G12) refines C. By the definition of
refinement, this amounts to showing that G2 C G and Ao 2O
A. We obtain

Gi2=(GiNGy) CG C@ @)
by conditions 1 and 2 in the theorem statement, and
A12 = (A1 N A2 U _|G12) 2 (Al n AQ) = A/ 2 A, (6)

by condition 1. Moreover, if C is compatible (i.e. A is not
empty), C; ® Co will also be compatible (i.e. A;s is not empty)
by (6). Equations (5) and (6) allow us to conclude that C; ®Cs
is well defined and refines C, hence for any implementations
My and My of C; and Co, My x M- satisfies the global
specification. [

There are two sources of conservatism in distributed syn-
thesis. The first one is due to the fact that local controllers
have only local information. Therefore, even if there exists a
centralized controller that realizes a global specification, there
may not exist local controllers that do so. This is an inherent
problem and can only be addressed by modifying the control
architecture (e.g., by changing the mapping of controlled
variables to controllers, by introducing new sensors, or by
modifying the information flow between local controllers).
The second source of conservatism is computational. Even
when local controllers that realize the global specification
exist, it might be difficult to find them (e.g., see [28] for some
undecidability results). We note that the conditions provided
in Theorem III.1 are only sufficient conditions. The choices
of e, and ¢, for j € {1,2} plays a role in the level of
conservatism. In principle, ., and ¢, should be chosen such
that A’ is as “small” as possible, and G’ is as “large” as
possible in the sense of set inclusion. Hence, when conditions
1 and 2 are satisfied but condition 3 is not satisfied, one can
gradually refine the local specifications. See [15] for further
details and an example of such a refinement.

F. Design Space Exploration and Performance Optimization

Several real-time performance requirements (e.g. timing
constraints), mostly relating to the dynamic behaviors of the
physical plant and the hardware implementation of the control
algorithm, are better assessed on hybrid dynamical models. For
this purpose, we refine a subset of LTL requirements into STL
constructs on physical (e.g. electrical, mechanical) quantities
and leverage off-line or on-line monitoring techniques while
optimizing the system.

A Boolean verdict on whether a property is satisfied may
not be sufficient for design space exploration and system
optimization. In fact, we are also interested in capturing the
robustness of satisfaction of a formula ¢ by a signal q, i.e., the
amount of margin by which a property is satisfied. To do so,
we refer to the quantitative semantics of STL. The quantitative
semantics of STL are defined using a real-valued function p
of a trace g, a formula ¢, and time ¢ satisfying the following
property:

p(p,q,t) = 0 iff (q,t) = . (7

The underlying idea is that, whenever the absolute value of
p(p,q,t) is large, a change in g is less likely to affect the
Boolean satisfaction (or violation) of ¢ by g, i.e. the margin
by which a design satisfies ¢ is larger.

Without loss of generality, an STL predicate p can be
identified to an inequality of the form g(q) > 0 (the use
of strict or non strict inequalities is a matter of choice and
other inequalities can be trivially transformed into this form).
From this form, a straightforward quantitative semantics for
predicate p is defined as

(®)

Then p can be inductively defined for every STL formula using
the following rules:

P q,t) = g(q(t)).

P(_‘% qat) = *P(% q,t) (9)
p(p1 A w2,q,t) = min(p(p1,q,t), p(p2,q,t)) (10)
p(p1lrp2,q,t) = sup [min (p(p2,q,t), (11)

t'et4+1
inf t"]
ot plera.)
Additionally, by combining equation (11), and
Orp £ ~Or, we get
p(Orp,q,t) = inf p(p,q,t') (12)

t'et+1

Finally, for <&, we get a similar expression using sup instead
of inf. It can be shown that p, as defined above, satisfies
equation (7) and thus defines a quantitative semantics for
STL [32].

By leveraging such quantitative semantics, a design space
exploration problem on a hybrid system model defined as in
Section III-D2 can be formulated as follows. Let Csry,
(e, ps) be an STL contract encoding a set of system re-
quirements, with ¢, and ¢, PSTL formulas. Let C' be an
array of costs, and k € K a vector of platform configuration
parameters, i.e., a vector of variables in the hybrid system

model that are selected as a result of the design process. Our
goal is to find a set of parameter vectors k* that are Pareto
optimal with respect to the objectives in C, while guaranteeing
that the system satisfies ¢4 for all possible system traces
s € &S satisfying the environment assumptions ¢.. Examples
of design parameters could be the controller clock or a tunable
delay in a component.

To formalize the above multi-objective optimization prob-
lem, we partition ¢, as

@S(Ta Tl') = SOSC(Ta Tr) /\ /\ QOST,Z'(T77T)7 (13)

i=1

where a set of time parameters 7 € T and scale parameters
7 € II can be used to capture degrees of freedom that
are available in the system specifications, and whose final
value can also be determined as a result of the optimization
process. The formula ¢g. in (13) encodes the requirements
that will be considered as “hard” optimization constraints
for Boolean satisfaction, while ¢, ; are formulas that will
also be considered for robust satisfaction, i.e., given a system
trace s’ and a parameter set (7/,7’), the robust satisfaction
pi(psri(T!, "), s’,0) will also be computed. Similarly, the
array of costs C' can be partitioned as follows

C(r,T,m) = <Cc(n, 7,7), Ci(pi(@s,ri(T,7), 8(K), 0))’

1<i<m

(14)

where C.(k, T, 7) is a vector of costs that depend only on
the parameters of the model and the formulas; it can be used
to capture, for instance, some performance figures (e.g., band-
width, energy) as a function of the system design parameters,
or the duration of a requirement violation. Each component
Ci(pi(@sr.i, 8,0)) in (14) is instead a scalar function of the
quantitative satisfaction of each formula g, ;; it can be used
to capture and maximize the margin by which g, ; is satisfied.

By putting it all together, the design exploration problem
can be expressed as a multi-objective robust optimization
problem

C(k,T,m) (15)

min
KeK,TeT,well
F(s,k) =0
s.t.

8 = e

where we aim to minimize a set of costs over all possible
system and formula parameter valuations, for all the system
behaviors satisfying the behavioral model and the contract
Csrr. For a given parameter valuation x’, s’ = (u/,y’, &) is
the trace of input, output and internal signals that are obtained
by simulating F(.). A multi-objective optimization algorithm
with simulation in the loop can then be used to find the Pareto
optimal solutions «*. While this may be expensive in general,
it becomes affordable in many practical cases, as will be shown
in Section VI and Section VII.

s = ps(T,m) Vs s.t.

Specification
i Performagqe P

Reliability

Safety
@ and Performance

Constraints

Reliability @
Constraints
Discrete Event (LTL

Reliability ~"Continuous Time
d Hybrid (STL
Topology SyntheSis Contxol Synthesis

Reliability Behavioral
Models Models

—+

Contactors

Ex

Loads

eoe
Genearator

Architecture

Fig. 2. Pictorial representation of the main steps in the electric power system
design flow in Fig. 3.

IV. PLATFORM-BASED FLOW FOR ELECTRIC POWER
SYSTEM DESIGN USING CONTRACTS

Our design flow, pictorially represented in Fig. 2, consists of
two main steps, namely, topology design and control design.
The topology design step instantiates electric power system
components and connections among them to generate an
optimal topology while guaranteeing the desired reliability
level. Given this topology, the BPCU state machine can then
be synthesized in the control design phase to actuate contactors
while guaranteeing that loads are correctly powered. The
above two steps are, however, connected. The correctness of
the controller needs to be enforced in conjunction with its
boundary conditions, i.e., the assumptions on the entities that
are not controlled, yet interact with it. An example of such
an assumption is the number of paths from generators to a
load made available by the electric power system architecture
to the controller. Similarly, the reliability of an architecture
must be assessed under the assumptions that the controller
adequately configures the contactors to leverage the available
paths. Therefore, to achieve independent implementation of
architecture and controller, we address the synthesis problem
in a compositional way, by using contracts to incorporate the
information on the environment conditions under which each
entity is expected to operate.

Our design process includes a top-down and a bottom-up
phase. In the top-down phase, we associate the requirements
to the different entities in the system and formulate top-
down vertical contracts for them. In the bottom-up phase, we
populate the library of architecture components including, for
instance, generators, buses, power converters and contactors.
Each component is characterized by its attributes, including
multiple models or views, such as behavioral or reliability
views, and finite state machine or continuous-time models, as
detailed in Section III-A. Horizontal contracts specify legal
compositions between components. Bottom-up vertical con-
tracts define under which conditions a model is a faithful
representation of a physical element in the system. In what

Top-Level Requirements
(Contracts)
—
" CT CL‘,LTL
A 4

S —

Static/Non-functional Architecture Synthesis .

(e.g. Reliability, Connectivity) (CPLEX) Plant Architecture
(Graph)
CL‘,STI_

L —)
——— Reactive s

Discrete Event (LTL) Control Synthesis Ceon
S

(TULIP)
Control Protocol
(DE/FSM) 4 vV
S—
Continuous Time Simulation-Based Design Space Exploration
and Hybrid Models | (SIMULINK/BREACH/CPLEX)
Model Libraries [Plant Architecture_ and Controller]

& J (Hybrid)

Fig. 3. Electric power system architecture and control design flow and tool
chain.

follows, we provide details on the electric power system design
space exploration.

A. Design Space Exploration

There is currently no automated procedure for optimal
synthesis of control protocols simultaneously subject to relia-
bility, safety and real-time performance constraints. Therefore,
we reason about these three aspects of the design by using
specialized analysis and synthesis frameworks that operate
with different formalisms. Contracts specifying the interface
between components and views help transfer requirements
between different frameworks and verify correctness with
respect to the full set of requirements. As also shown in Fig. 3,
our design space exploration is organized as follows:

a) From system requirements, we generate a set of require-
ments for the electric power system architecture (denoted
as a contract Cp in Fig. 3). Safety, connectivity and power
flow requirements are expressed as arithmetic constraints
on Boolean variables (mixed integer-linear inequalities);
reliability constraints are inequalities on real numbers
involving component failure probabilities. The trade-off
between redundancy and cost can then be explored and
an electric power system topology is synthesized to
minimize the total component cost while satisfying the
constraints above. The synthesized topology serves as
a specification (assumption) for the subsequent control
design step.

b) A subset of the original high-level system specifications
are translated into LTL formulas for the topology gener-
ated in a) (contract Cc,rrr, in Fig. 3). Using the results
in Section III-E, a reactive control protocol is then syn-
thesized from LTL constructs and made available as one
(or more) state machines, satisfying safety and reliability
specifications by construction. However, several archi-
tectural and real-time constraints (e.g. timing) related
to the physical plant and the hardware implementation
of the control algorithm are not available at this level
of abstraction. Approaches to incorporate timing within
reactive control synthesis, by using timed specification

languages (e.g., timed computation tree logic) and related
synthesis tools (e.g., UPPAAL-Tiga [33]), are currently
under investigation. In this work, timing constraints are
handled at a lower abstraction level, as detailed below.

¢) The architecture in a) and the controller in b) are executed
using continuous-time or hybrid behavioral models to
assess satisfaction of (some of) the requirements at a
lower abstraction level (contract Cc g7y, in Fig. 3). The
LTL requirements from b) are also refined into STL
formulas (contract C¢ ;ry, in Fig. 3). Simulation traces
are monitored to verify and optimize the controller using
the approach detailed in Section III-F. As an example, an
optimal reaction period can be selected in the presence
of delays in the switches and under the assumption of
a synchronous controller implementation. The resulting
architecture and controller pair is then returned as the
final design.

We provide details on both topology and control synthesis in
Section V and Section VI, including sufficient conditions for
their co-design, while guaranteeing that top-level requirements
for the controlled system are satisfied.

V. ELECTRIC POWER SYSTEM TOPOLOGY DESIGN

We cast the topology design problem as a mixed integer-
linear optimization problem. Our goal is to derive an electric
power system architecture that satisfies a set of connectivity,
power flow and reliability requirements, while minimizing cost
and complexity (i.e. number of components) of the overall
network.

The electric power system architecture is modelled as a
directed graph § = (V, E), where each node v; € V represents
a component (with the exception of contactors, which are
associated with edges) and each edge e;; € E represents
the interconnection between v; and v; (4,5 € {1,...,n}).
Therefore, the set of Boolean variables {eij}, each denoting
the presence or absence of an interconnection, are the decision
variables for our optimization problem. While connectivity and
power flow requirements generate constraints that are linear in
the decision variables, or can be straightforwardly linearized,
the situation is different for reliability constraints. A reliability
constraint prescribes that the failure probability of a critical
load, i.e. the probability that a load stays unpowered longer
than specified because of failures, should be less than a desired
threshold. As further discussed in Section V-B, evaluating
such a failure probability produces high-order polynomial
inequalities in terms of the decision variables. Such constraints
would either call for a nonlinear solver or for several symbolic
manipulations and linearization techniques, possibly involving
large sets of auxiliary variables. Therefore, instead of for-
mulating a single, “flat” optimization problem, we propose
an iterative algorithm inspired by the mixed integer-linear
programming modulo theory approach [34], [35], summarized
in Algorithm 1.

The topology design algorithm receives as inputs: (part
of) the electric power system platform library £, including
generator power ratings g, component costs w and failure
probabilities P; a topology template 7 with the maximum

Algorithm 1 Topology Design

Input: Topology template T, arrays of generator power ratings
g, component failure probabilities P and costs w, required
reliability r*, set of connectivity and power requirements R
Output: Topology G
while » > r* do > failure probability
[Cost, Cons]=FORMMILP(T, w, g, R)
G=SoLVE(Cost, Cons)
[r, Ryew] = RELANALYSIS(G, P)
R = ADDCONST(R, R,c) > add new constraints
end while

number of allowed components for each category and their
composition rules; the set of requirements, including con-
nectivity constraints, load power and reliability requirements.
Reliability requirements are generally specified at critical loads
or essential buses; to simplify, in Algorithm 1, we assume that
an overall system reliability requirement r* is provided, as
defined in Section V-B.

A mixed integer-linear program (MILP) generates minimum
cost topologies for the given set of connectivity and power
flow constraints. The MILP is solved in a loop with a relia-
bility analysis algorithm, which receives as input a candidate
topology, evaluates the failure probability of critical loads and
implements strategies to improve the reliability, by providing
additional constraints for the MILP, until all requirements are
satisfied.

The contract for the topology design step can then be ex-
pressed as a pair Cr = (Ap, Gr), where A represents the set
of topology graphs that conform to the template 7 and are la-
belled with the generator power ratings g, the component costs
w and failure probabilities P. G represents the topology
graphs that satisfy the load reliability requirements and power
requirements (in nominal conditions). Both A7 and G can be
concretely expressed using mixed integer-linear or nonlinear
constraints (originated from probability computations) in the
decision variables and the graph model parameters. In what
follows, we detail the two key components of our synthesis
flow, namely the MILP formulation function FORMMILP and
the reliability analysis function RELANALYSIS.

A. Mixed Integer-Linear Program Formulation

FORMMILP formulates the optimization problem by assum-
ing an initial graph template 7 for the electric power system
topology, comprising a maximal number of virtual nodes and
edges together with their composition rules. Some nodes and
edges are activated during an optimization run to generate a
candidate topology. The others remain inactive or can be used
in subsequent optimization runs to provide redundant paths,
by increasing or reconfiguring the electric power system inter-
connections until all the reliability requirements are satisfied.
The candidate topology resulting from an optimization step is
a minimal topology, in which unnecessary nodes and edges
are pruned away to minimize the overall network cost, while
satisfying a set of connectivity and power flow constraints.

To simplify our notation, we partition the adjacency ma-
trix of G into smaller blocks to represent interconnections

TABLE II
CONNECTIVITY SUB-MATRICES

Variables Interconnection Dimension
Mo Generator - AC Buses Ngen X Ngcb
Mbb AC Buses - AC Buses Ngeb X Nach
Y L AC Buses - Rectifiers Naeb X Nrec
Mrd Rectifiers - DC Buses Nrec X Ndeb
Mdd DC Buses - DC Buses Ngeb X Ndeb
Mt DC Buses - Loads Ndeb X Noad

between subsets of components, as summarized in Table II.
For instance, the interconnections between ng., generators
and ng., AC buses can be represented by a ngen, X ngep
connectivity sub-matrix denoted as M9®. We further assume
that any interconnection (edge) between two components is
associated to a contactor. Relaxing this assumption entails
minor modifications in our formulation to handle contactors
as separate nodes in G.

The cost function is the sum of the costs of all components
(associated with the nodes) and contactors (associated with the
edges) used in the electric power system architecture, i.e.

[V VI V]

Z djw; + Z Z €;jW;j
i=1

i=1 j=1

(16)

where |V is the number of nodes, w; is the cost of component
i, W;; is the cost of contactor on edge e;; and d; is a binary
variable equal to one if the component is instantiated in a
topology and zero otherwise.

All components and paths in the electric power system need
to obey the composition rules in our library. In particular,
connectivity constraints enforce legal connections among com-
ponents and are formalized as arithmetic constraints on the
Boolean decision variables. As an example, we prescribe that
any DC load must be directly connected to only one DC bus
as follows:

Ndcb

S MM =1 VjeN, je [l noad-

i=1
Moreover, all DC buses that are connected to the network
(e.g. to a load or another DC bus) must be connected to at
least one TRU to receive power from an AC bus i.e. V j €
N,j € [1, ndcb]

Nrec Nioad Nrec Ndcb

DMz Yy M, > M=) ML
i=1 =1 i=1 i=1

All TRUs that are connected to a DC bus must be connected
to at least one AC bus, i.e. Vj €N, j € [1,nrec]

Nacd Ndcb

YoM=Y M
1=1 =1

Similarly, all AC buses that are connected to a TRU or another
AC bus must be connected to one generator, i.e. Vj € N, j €
[L nacb]

Ngen Nrec Ngen Nach

gb br gb bb
DoME =Y My Y M=y MY,
=1 1=1 =1 =1

while a rectifier cannot be directly connected to more than
one DC bus and to more than one AC bus, ie. V j €N, j €

[17 nrec}
Ndcb Nach

Sanisn Sa<i
=1 =1

Power-flow constraints are used to enforce that the total
power provided by the generators in each operating condition
is greater than or equal to the total power required by the
connected loads. For instance, in normal operating conditions,
the power generated on each side should be greater than or
equal to the total power required by the loads on that side. On
the other hand, when only the APU is active, then it should be
capable of powering at least the non-sheddable loads on both
sides of the system.

B. Reliability Analysis

As discussed in Section III-A, every library component is
characterized by a reliability model estimating the failure prob-
ability during its operation. Experimental data on the failure
rates of the physical components (e.g. contactors, generators,
buses) have been collected over the years and made available
in the literature. Failure rates can be related to probabilities
as follows. We assume that the time at which a component
can fail is a random variable with an exponential distribution,
whose parameter A is the failure rate [36]. Therefore, the
probability that a failure is observed in a time interval T’
can be computed as Prqy = 1 — e~ T The objective of the
reliability analysis function RELANALYSIS is then to compute
the probability of composite events of failure in the system,
starting from the failure probabilities of its components. We
denote as overall system failure I’ an event in which there
is no possibility for any of the available generators to deliver
power to a critical load or an essential bus. Therefore, the
overall system failure probability 7, also denoted as reliability
level, is defined as

r=P(F) :1}»(6 Fk>,
k=1

where I} is a failure event at the critical load (or essential
bus) j, and m is the total number of critical loads (or
essential buses). We assume that when a component fails, it
is no longer possible to deliver power from and through that
component, i.e. the component becomes an open circuit in
the schematic and cannot be recovered. Moreover, failures in
different components are considered as independent.

To compute the reliability at a critical load, we adopt an
extension of traditional fault tree analysis (FTA) that supports
hierarchical composition, similar to the approach in [37].
Besides handling decomposition with respect to the hierarchy
of failure influences, our formulation is able to compute failure
probabilities directly from the electric power system topology.
Our assumption is that the reliability level of an electric power
system can be statically determined by its topological structure
and the redundancy of the paths used to power a critical load.

To compute the event F; of a system failure at component
i, we first convert the original electric power system graph

a7

Fig. 4. Directed graph representation of an electric power system architecture.
Unconnected nodes represent virtual components.

G = (V, E) into a directed graph §’. An edge is directed from
v; to v; if v; receives power by (or through) v; when traversing
the graph from a critical load to a generator. An example of
such a graph G’ is shown in Fig. 4. Let A be the adjacency
matrix for §’, P; be the event that component : fails (self-
induced failure), and let p; = P(FP;). Then, the event F; of a
system failure at component 7 can be recursively computed as
follows

Fi=pPu| (] F (18)

j=1

A ;70
where A; ; is i'"-row, j"-column element of A. In other
words, component ¢ ceases to be powered when either a failure
is generated by itself, or when failures are induced in all its
neighbor nodes. We denote as neighbors only those nodes
through which ¢ can actually receive power.

When &’ is a tree, computing the failure probability for a
critical load ¢ is straightforward. The tree is traversed from
the critical load (the root of the tree) to the generators (the
leaves of the tree), and the probability of failure at node ¢ can
be directly derived from equation (18) as

[if Ay =0Vj
P(F) = { pi + (1 —pi) H?=1[P(Fj)]f‘” otherwise.

19)

If §’ includes cycles, failure probabilities of critical loads can
still be computed by traversing the graph using a similar pro-
cedure as above, as sketched by the recursive implementation
in Algorithm 2.

To compute the failure probability at a critical load ¢, COM-
PRELIABILITY stores in L all the neighbor nodes of ¢ that have
not been visited yet (provided by the function UNVNEIGH).
Then, COMPRELIABILITY generates all possible combinations
of failure events due to components in L (provided by the
function GENEVENT) and compute their probability, by mul-
tiplying the contributions due to independent components and
summing up the contributions due to disjoint events. Whenever
one (or more) components are healthy (EXISTSHEALTHY

Algorithm 2 COMPRELIABILITY

Input: A directed graph §’, an array of component failure
probabilities P, an array of currently visited nodes C' (at which
failure probabilities must be computed), an array of previously
visited nodes W

Output: probFail, array of probabilities of all failure events
induced by the neighbors of the nodes in C

probFail < []
L < UNVNEIGH(C, W) 1 unvisited neighbors of nodes in C
W « [W, L] > update visited nodes

if ISEMPTY(L) then
probFail + 1
else
for all event in GENEVENT(L) do
fail <+ 1
for all £ in L do
if ISFAILING(k, event) then
fail < fail « P(k)
else
if ISGENERATOR(L) then
fail <0
else
fail < fail * (1 — P(k))
end if
C + [C,K]
end if
end for
if EXISTSHEALTHY(event) then > not all fail
fail + fail x SUM(COMPRELIABILITY (P, C, W)
end if
probFail + [probFail, fail]
C <[]
end for
end if

> return the neutral element

> all failure events

> component fails

> healthy generator

returns one), COMPRELIABILITY is recursively called by
using such healthy components as current nodes. Recursion
stops when either a healthy generator is found or L is empty.
In the first case, there exists a path of healthy components
from a generator to a critical load and, therefore, its failure
probability is zero. Otherwise, a “healthy” path is found which
does not include a generator; its contribution to the overall
failure probability is then irrelevant and COMPRELIABILITY
returns the neutral element 1.

At each iteration, if the optimal architecture satisfies the
reliability constraints, it is returned as the final solution.
Otherwise, RELANALYSIS estimates the number of paths
needed to achieve the desired reliability and suggests a set
of strategies to implement the required paths by augmenting
the original optimization problem with a set of connectivity
constraints. Such strategies are subsequently deployed until
the target failure probability is reached. As a first strategy,
the number of available paths is increased by introducing
additional interconnections (and contactors) between the right
and the left side buses of the system, where critical loads are
connected. Afterwards, redundancy in the DC and AC buses
on each side of the topology is increased. Finally, redundant
components may be added if available, whenever they are
compatible with other cost or weight constraints.

As an example of constraints generated to improve reli-

ability, we enforce that the number of connections between
left-side and right-side DC buses be incremented by adding

L R L _R
Ndcy Mdeb Nach Mdeb

Z Z M;ZLR,W,@U} > 14 Z Z Mg;LR,old.

i=1 j=1 i=1 j=1

(20)

However, if a right-side DC bus is connected to a left-side DC
bus then it should also be connected to a right-side DC bus
or load, i.e.,

;ELR’"GW < max{ml?x M;i}lk’R,maX Mﬁi"R (21)
VieNjie[l,nk,VjeN,je[l,nl,] Moreover, if a
left-side DC bus is connected to a right-side DC bus, then it

should also be connected to a rectifier, i.e.,

e < max MGr (22)
VieNie[l,nk,],VijeNj e [l,nf,]. The super-
scripts R and L in equation (21) and equation (22) denote
left and right-side matrices, ML is the left-right DC bus
connectivity matrix, n% , and nf, are the number of left and
right DC buses, respectively. Equations (20)-(22) are encoded
and added to the optimization constraints for the next iteration
every time the number of connections between left-side and
right-side DC buses must be incremented. Similar constraints
must also hold after replacing R with L, and vice-versa, in
equations (21) and (22).

VI. ELECTRIC POWER SYSTEM CONTROLLER DESIGN

Power requirements of different loads might differ in an
aircraft based on the mode of operation. Similarly, the avail-
ability of the generators and the health conditions of several
components might vary during the flight. The goal of the
BPCU (i.e., controller) is to reconfigure the electric power
system and reroute power by appropriately reacting to such
changes in system conditions to ensure that safety-critical
loads are always powered. In this section we first describe
how the control logic for the BPCU can be automatically
synthesized within the proposed framework. Then, we present
a domain specific language for electric power system to fa-
cilitate requirement formalization for reactive synthesis based
on LTL. Finally, we discuss the use of STL and simulation-
based design space exploration to check or enforce real-time
constraints (e.g. timing) for controller implementation.

A. Synthesis of Reactive Protocols for Electric Power Distri-
bution

The control protocol synthesis problem for electric power
system can be stated as follows: given an electric power system
topology (generated as discussed in Section V) and a formal
specification describing assumptions on the components and
requirements for the system, build a controller that reconfig-
ures the system (via turning on and off the contactors) by
sensing and reacting to the faults and the changes in system
status so as to ensure that the specification is met. Next, we
discuss how to formalize the requirements to recast the above
problem as a reactive synthesis problem.

1) Variables: Environment variables include the health sta-
tuses of components that are uncontrolled. In our formulation,
we consider only generators, APUs, and rectifier units as
environment variables. They can each take values of healthy
(1) and unhealthy (0), and may change at any point in time'.
Controlled variables are contactors, and can each take values
of open (0) or closed (1). A closed contactor allows power to
pass through, while an open one does not. Dependent variables
are buses that can be either powered (1) or unpowered (0).
Bus values will depend on the status of their neighboring
contactors, buses, as well as the health status of connecting
generators, APUs, or rectifier units.

Timing considerations play a key part in the specifications
for an electric power system. LTL, however, only addresses
the notion of temporal ordering of events. To reconcile this
discrepancy, we handle timing annotations by introducing
clock variables. Verification of actual timing constraints related
to the controller implementation is then performed at a lower
abstraction level, as detailed in Section III-F.

Based on the set of variables above, system specifications
are expressed as a contract Cc = (A¢, G¢), where assump-
tions Ao encode the allowable behaviors of the environment
the control system operates in, and guarantees GG¢ encode the
controller requirements. By defining Ac = {o|o = .} and
Ge = {olo = (ve = ©s)}, with ¢, and @, as in equation (4),
a behavior ¢ = ¢ if and only if o is in the guarantees
of Co (already in saturated form). Therefore, solving the
reactive synthesis problem is equivalent to generating an
implementation for Cc. The following lists the temporal logic
formulas used to concretely express the contracts for controller
synthesis for the primary distribution problem in an electric
power system.

2) Environment Assumptions: Let Z be an index set enu-
merating the set of environment variables described in Section
VI-Al. For each environment variable ¢;, i € Z, let p; be its
probability of failure in a given time interval T as defined
in Section V-B. Let rg be the overall reliability level the
system has to achieve, that is, the probability of the overall
system failure should be less than or equal to rg. Assuming
independence of component failures, the overall reliability
level determines the allowable environment assumptions by
providing a bound on the number of simultaneous component
failures allowed. More formally, denote a single configuration
of the environment (i.e., an environment state) by e. For a
given subset Z' C Z of the environment variables, we define
er = (e1,...,ez), where e; = 0 (unhealthy) if i € Z';
and e; = 1 (healthy) otherwise. Let h : [0,1] — 22" be
the function that maps the system reliability level to the
possible environment configurations. We can then enumerate
all allowable environment configurations based on the required
reliability level, as

55 = {ez/ |I/ c h(Ts)}

With this definitions, an environment assumption can be
written in LTL as O(e € &£g).

(23)

I Generators can be taken offline by the pilot or may stop functioning due
to a fault. We do not differentiate between these cases and simply call a
generator unhealthy when it is unavailable or malfunctioning.

As the function & can be difficult to compute, alternatively,
one can reason about the probability 7~ of an environment
configuration and map it back to the system reliability level
rg. To this effect, we enumerate all environment configurations
that occur with probability more than a given level r¢. Then, if
the control synthesis problem is realizable with the assumption
O(e € &¢), this implies that the system level reliability is

rs=> [» [[Q-py)
e¢fc jie;=0 jie;=1
The second environment assumption is also related to failure
analysis. We assume that when a component fails during the
flight (the interval T'), it will not come back online. This can
be expressed in LTL as

O /\ ((6z = 0) — O(ei = 0))
i€T
3) Controller Guarantees: We consider the following sys-
tem requirements as LTL guarantees for the controller.
Power Status of Buses: An AC bus can only be powered
if there exists a live path (i.e., all contactors closed along a
path) that connects the bus to a healthy AC generator or a
healthy APU. Similarly, a DC bus can only be powered if
there exists a live path that connects it to a healthy rectifier
unit, which itself is connected to a powered AC bus. Let p; g
denote the set of all components (i.e., contactors and buses)
along a path between bus B and environment variable e; for
i € 7, excluding B and e;. Furthermore, let G CZand R C 7
represent the sets of generators and rectifier units. AC bus B
is powered if there exists a live path between B and e; for
i € G, written as?

O¢V [e=0a A @=1)

i€g X€pi,B

(24)

(25)

If there exists no live path between B and a generator e; for
i € G, then B will be unpowered

0=V [e=DA A\ @=1)

i€G Xepi,B

= (b=0)}. (26)

A similar set of specifications for DC buses holds in which
environment variables e; span ¢ € R.

Balanced Power Flow in Nominal Conditions: Under
nominal conditions (i.e., when all generators and rectifier units
are healthy), the power drawn from each generator by the
buses connected to it should be less than the capacity of that
generator. Let Ppg be a constant that corresponds to the maxi-
mum power required by the loads connected to the bus B and
]5% be a constant corresponding to the power generator ¢ can
nominally provide. Using the live path constructs, we define
the power varialzles lip € {0, Pg} such that Nxep, (@ =
1) = (I;,;p = Pp), and _‘/\Xeﬁi,B(x =1) = (lip = 0).
Then, the power flow requirement can be written as

D{/\(ei =1) = NP, = > li,B)}>
€L 1€G BeB

ZPer abuse of notation, we denote components by uppercase letters (e.g.,
C, B) and component statuses by lowercase letters (e.g., c, b).

where B represents the set of buses.

No Paralleling of AC Sources: To avoid paralleling, we
explicitly enumerate and disallow all bad configurations. In
Fig. 1, paralleling can occur if there exists a live path that
connects two AC generators or APUs. Let p; ; represent the
set of components along a path between generators e;, e;, for
i,j € G and i # j. We disallow configurations in which all
contactors C' € p; ; create a live path. These specifications are

written as
OA < N\ =1

i,j€G Cepi,j

27

Safety-Criticality of Buses: A safety-critical bus can be
unpowered for no longer than T time steps. This is imple-
mented through the use of an additional clock variable x5 for
each bus B, where each “tick” of the clock represents ¢ time.
If the bus is unpowered, then at the next time step clock =g
increases by d. If B is unpowered, then at the next time step
clock xp resets to zero. Then, we limit the number of steps
B can remain unpowered in order to ensure that xp never
becomes larger than 7. Thus, for all safety-critical buses,

D{(b:O)%(OxB:xB—F(S)}, (28a)
O{(b=1) = (Ozp =0)}, (28b)
O(zp <Ts). (28¢)

Unhealthy Sources: A bus connected to an unhealthy
source (generator or rectifier unit) will create a short-circuit
failure, leading to excessive electrical currents, overheating,
and possible fires. While generators have internal protections
to avoid such failures, we require that appropriate contactors
open when a generator or APU becomes unhealthy to isolate
the unhealthy source and prevent its use. Let N (e;) represent
the set of contactors directly connected, or neighboring, envi-
ronment variable e; for ¢ € Z. We write the specifications to
disconnect all unhealthy sources as

A =0

CeN(e;)

O (ei=0)— (29)

i€T

The above mentioned specifications can be put in assume-
guarantee form as in equation (4). Moreover, since they are
within the GR(1) fragment of LTL, digital synthesis tools,
such as the one implemented in JTLV [30], can be used to
automatically synthesize the control protocol. For the exam-
ples discussed in this paper, we used the Temporal Logic
Planning (TuLiP) Toolbox [31], a collection of Python-based
code for automatic synthesis of embedded control software,
which provides an interface to JTLV.

4) Capturing Actuation Delays: In the discussion above,
we assumed ideal contactors that can be instantaneously
controlled. It is possible to capture delays in contactor opening
and closing times, as well as the communication delays
between the controller and the contactors. To this effect,
one can introduce a controlled variable C' to represent the
controller intent for contactor C' and treat the contactor as
an environment variable. The uncertain delay between the
controller intent and contactor state can be handled by the

use of an additional clock variable x~ for each contactor
C, where each “tick” of the clock represents ¢ time. If the
contactor intent is open and the contactor state is closed, the
contactor opens within [T, . ,T,] units of time unless a
close command is issued before it opens. If the contactor intent
is closed and the contactor state is open, the contactor closes
within [T, ., ,T¢,.,.] units of time unless an open command is
issued before it closes. Once the contactor intent is set, if the
contactor state does not match the intent, at the next step clock
x¢ will increase by d. If contactor state and intent match, then

at the next step clock x¢ resets to zero:
O{(Oc =¢) = (Ozc = 0)}.

When the control command is the same as the contactor state,
the contactor state remains the same, i.e.,

0{(¢=c¢) = (Oc=¢)}.

Finally, the assumption capturing the contactor closing behav-
ior in relation to the controller input intent is given by

O{(é=1Ac=0A (¢ <T,,,)) —
(Oc=0A0Oxc =2c +9)},
O{(c=1Ac=0A(zc>T.,.,)) —
(Oc=1VOzc =2¢c+9)},
O(ze < T

maz)'

The contactor opening behavior can be formally captured in
a similar manner. The formulas mentioned in this section
enter to the control synthesis problem as new environment
assumptions when delays are taken into account. It should
also be noted that unhealthy sources can only be disconnected
with a delay in this case, therefore formula (29) should be
adjusted accordingly.

B. Domain-Specific Language

The lack of familiarity with formal methods among system
engineers provides a challenge to the actual adoption of
reactive synthesis techniques. Therefore, we also propose an
electric power system domain-specific language that enables
automatic generation of the LTL specifications described in
Sections VI-A2 and VI-A3 out of a set of pre-defined prim-
itives. Our language can smoothly interface with pre-existing
tools, such as visual programs for single-line diagrams, which
engineers are familiar with, as well as with the topology design
framework in Section V.

A graph data structure § = (V, FE) as the one used in
Section V can be generated from a visual representation of
the topology, provided by the user, or directly imported as a
result of the design procedure in Section V. The set of nodes
V' represents the set of components, consisting of generators,
buses, and rectifier units; the set of edges E represents the set
of contactors as well as solid wire links between components.
The adjacency matrix A is a square matrix whose diagonal
entries are zeros, and whose non-diagonal entries are ones or
zeros depending on whether a connection (with or without
contactors) exists between vertices. The component properties
that are used to formulate the LTL specifications are directly

referenced from the component attributes in the platform
library, as described in Section III-A. Given the electric power
system topology and the component attributes, the LTL spec-
ifications in Section VI-A can be converted from a set of
primitives, a representative subset of which are provided in
the following.

Environment assumptions: In the environment primitive,
the first input is the system reliability level, followed by all
subsets of components that are uncontrolled and can fail. As an
example, when only generators and rectifier units are assumed
to fail, this can be written as env(rg, Ge, R.), where G, C G
and R, € R, G and R being the sets of all generators and
rectifier units, respectively.

No-paralleling of AC sources: A “non-paralleling” primi-
tive accepts as inputs any subset of G, and can be written as
noparallel(G,), where G, C G.

Essential (safety-critical) buses: Let the set of all buses be
B. An “essential bus” primitive can input any subset of 3 such
that the bus elements can be unpowered for no longer than
the maximum allowable time as specified in the component
library. This primitive is written as essbus(B.), where B, C B.

Disconnect unhealthy sources: A “disconnect” primitive
can take as input the union of subsets of G and R. This
primitive is written as disconnect(Gy, R4), where G4 C G
and R4 C R.

C. Co-design of Topology and Control

As mentioned in Section IV, topology and control proto-
col need to be coherently designed to satisfy the top-level
requirements of an electric power system. In this section,
we deal with the co-design problem for both system topol-
ogy and control protocol to satisfy a system contract Cg
with an overall reliability requirement rg. We show that if
system-level requirements are partitioned according to the
contracts Cp and C¢, as defined, respectively, in Section V and
Section VI-A, then the electric power system can be designed
in a compositional way, i.e., the methodologies illustrated in in
Section V and Section VI-A can be independently deployed,
while guaranteeing that the assembled system is correct and
satisfies Cg.

In particular, Propositions VI.1 and VI.2 below discuss
conditions for the controlled system to satisfy the system-
level contract Cg if the selected topology and control protocol
satisfy their contracts Cp and C¢. First, in Proposition VIL.1, we
assume that actuation delays are ignored in control synthesis.
We then remove this assumption in Proposition VI.2.

Proposition VI.1. Assume contactor delays are ignored in
control synthesis (i.e., T, , =T, =T, =T, =0,
therefore no contactor intent variable is introduced). If the
topology implements its contract Cp with a reliability level
rr, then a centralized control implementing its contract Co
for this topology is always realizable when a reliability level
rg > rr is used while generating the environment assumptions
as in (23). Moreover, the controlled system will satisfy the
system-level requirements with a reliability level rg.

Proof. As shown in Fig. 2 and 3, both the topology synthesis
and control synthesis steps are based on a consistent set of

models and share the same labelled topology template 7. In
fact, the configurations conforming to 7 are the assumptions
for the topology contract Cr, while the synthesized topology is
used to generate the LTL formulas for the controller contract
Cc. We prove the realizability of the controller by discussing
the system-level requirements listed in Section VI-A3 and
Section V as follows:

(a) Reliability Requirements. In both the topology and
control design steps, we assume that when a component fails it
will not come back online. Therefore, reliability requirements
are treated as static requirements in failure condition. If the
topology guarantees a reliability level 77, then there are
enough components and paths from generators to critical loads
such that any combination of component faults causing a
system failure has a joint probability p < 77. Let Er be
set of all the environment configurations that correspond to
these combinations of component faults, and let £p be its
complement. Then any combination of faults associated with
a configuration in &7 does not cause any loss in system func-
tionality because of the available redundancy. Since rg > rp
is used in C¢, Eg C Ep will also hold, hence accommodating
any combination of faults associated with an environment
configuration in £g will also be feasible. Therefore, a cen-
tralized controller assuming a reliability level rg in Co will
always realize this specification, thus guaranteeing an overall
reliability level » = rg for the controlled system.

(b) Balanced Power Flow in Nominal Conditions. Power
requirements are treated as static requirements in nominal
condition. Power flow constraints in the topology optimization
problem enforce that loads on each side of the topology graph
are selectively connected to one or more generators on the
same side, in such a way that the total power capability of the
generators is equal or larger than the required power from the
respective loads. It is, therefore, enough to use the available
paths in the synthesized topology for a centralized controller
to realize this specification.

(c) Unhealthy Sources. Connectivity constraints in the topol-
ogy optimization problem enforce that any edge (interconnec-
tion) originating from a source node (generator or rectifier
unit) is associated with a contactor. Therefore, it is always
possible for a centralized controller to open such contactors to
isolate unhealthy sources and realize this specification. Since
contactors can be instantaneously operated, full isolation of
unhealthy sources is guaranteed within one time step (§ time).

(d) No Faralleling of AC Sources. As discussed above, all
AC sources can be isolated by opening the related contactors.
Moreover, connectivity constraints prescribe that AC buses be
also connected via contactors. This makes it possible for a
centralized controller to always realize this specification by
isolating buses connected to different AC sources as well as
isolating unhealthy sources while inserting healthy ones.

(e) Safety-Criticality of Buses. Since all contactors are
assumed as ideal and instantaneously controllable, it is always
possible for a centralized controller to configure the topology
and realize this specification whenever T > 6.

We then conclude that the conjunction of the LTL formulas
used in C¢ to formalize requirements (b)-(e) under the assump-
tions in (a) can always be realized by a centralized controller

if rr < rg holds. O]

Based on Proposition VI.1, for the controlled system to
satisfy a contract Cg with a reliability level rg, it is enough
to select a topology that implements its contract Cr with a
reliability level rr < rg, and then synthesize a centralized
controller for the selected topology by using a reliability
level rg to generate the environment assumptions. When
contactor delays are not ignored in control synthesis, a similar
proposition holds if an additional condition is assumed on
the maximum bus unpowered time 7T, allowed in (28), as
discussed below.

Proposition VL.2. Assume delays in the contactors are taken
into account in control synthesis (i.e., T, . > 0 and
T.,... > 0). If the topology implements its contract Ct with a
reliability level rr, then there exists a large enough time T
such that a centralized control implementing its contract Co
for this topology is realizable when a reliability level rs > 1
in equation (23) and a bus unpowered time Ts > T* in
equation (28) are used while generating Cc. Moreover, the
controlled system will satisfy the system-level requirements

with a reliability level rg.

Proof. As in Proposition V1.1, both the topology and control
synthesis steps are based on a consistent set of models and
share the same template 7. Moreover, we can prove the
realizability of the controller by discussing the requirements in
Section VI-A3 and Section V one at a time. In particular, the
static specifications in (a) and (b) will be always realizable by
the same arguments used in Proposition VI.1. To show that the
dynamic requirements in (c), (d) and (e) will also be realizable
when actuation delays are taken into account, we proceed as
follows:

(c)-(d) Unhealthy Source Isolation and AC Sources Parallel-
ing. By the same arguments used in Proposition VI.1 (c), all
sources (including AC sources) can be isolated by opening
the related contactors. Moreover, the topology connectivity
constraints prescribe that AC buses should also be connected
via contactors. Even if contactors can only be opened or closed
with a delay, it is still possible for a centralized controller
to realize this specification by disconnecting two AC buses
at least T, time before connecting them to different AC
sources or by isolating unhealthy sources at least 17, time
before connecting the healthy ones.

(e) Safety-Criticality of Buses. To guarantee that safety-
critical buses are unpowered for no longer than the desired
time T, the controller needs to reconfigure the topology by
opening and closing sets of contactors to deactivate existing
components and paths and activate new ones. Because of the
actuation delay, topology reconfigurations cannot occur instan-
taneously; some sets of contactors will need to be actuated
in sequence to guarantee isolation of unhealthy sources and
prevent paralleling of AC sources, as required in (c) and (d).
Since there is a finite number of topology configurations, there
will also be a finite number of possible reconfigurations XR.
Consider the step ¢ from an initial configuration A; to a final
configuration Z;. Let n’ and n’ be the minimum number of
contactor sets that must be, respectively, opened and closed

in sequence in order to provide power to a critical bus during
reconfiguration ¢. Then, the minimum (worst-case) time during
which at least one critical bus stays unpowered will be

i | Tomar i | Temas
T, =n} {5-‘5‘*‘%" 5 -‘5.

Let T* = max;cx T3; then, T is the minimum bus unpowered
time that can always be guaranteed across all possible topology
reconfigurations. Therefore, a centralized controller can always
be realizable when T, > T* is chosen in C¢.

As in Proposition VI.1, by combining the arguments above
with the ones used in (a) and (b), we can conclude that the
conjunction of the LTL formulas used in C¢c to formalize
requirements (b)-(e) under the assumptions in (a) can always
be realized by a centralized controller if 7 < rg and Ts > T*
hold. O

D. Simulation-Based Design Space Exploration

As shown in Section VI-C, the design steps in Section V
and Section VI-A allow synthesizing electric power system
architectures and control protocols that jointly satisfy the top-
level system specifications, represented by contracts Cr and
Cc.rrr- To assess the satisfaction of real-time performance
constraints, we monitor STL formulas from the controller con-
tracts Cc,s7r and C 7y, on voltage and current waveforms
over time, as discussed in Section III-F and IV. As an example,
we investigate here the maximum reaction time allowed to
the controller. For this purpose, we assume a synchronous
implementation of the controller, running at a fixed period
T,. In our hybrid model, the BPCU is connected in closed
loop with the power system plant, while failure events can
be injected by setting the input signal w(t). Moreover, we
assume that all contactors respond with a fixed delay 7} to the
open/close commands from the BPCU. We then consider the
requirement that a DC essential bus must never be unpowered
for more than ¢,,,, under any possible failure scenario. In a
continuous setting, such a requirement is translated by stating
that the DC bus voltage Vpc should never deviate from the
desired value V; by more than a margin € for more than ¢,,,4,.
The predicate specifying that the current value of the voltage
stays in the desired range is: |Vpc(t) — Vy| < €. Then, the
STL formula expressing this to be false for at least .44 iS:

X = 00t (VD () = Va| < €).

Since we need to enforce that V¢ is never out of range only
after the initial start-up transient time 7;, we require

¢(Ti) = _|(<>[Ti700) X)

(30)

€1y

to be true.

To compute the maximum amount of time elapsed while the
DC bus voltage is out of range, i.e. for how long at most the
voltage requirement on the DC bus is violated, we turn (30)
into a PSTL formula, by introducing the timing parameter
Te, after which an out-of-range voltage event is detected, as
follows:

Y(7e) = Upo.r1~([VDe (t) — Val <e). (32)

The initial start-up transient time 7; is estimated from simula-
tion as a function of 7). and T};. Then, the maximum violation
period 7(T,.,T;) can be computed as the

sup{7e >0 | & (7:(T,Ty),7e) = False}, (33)

where

¢<Tia Te) = _\(<>[7'i,00) "/’(TE))'

The formula in (34) allows exploring the T).-versus-Ty
design space and finding the maximum allowed controller
reaction time T} for a fixed T}, in such a way that the essential
DC bus is never out of range for more than ¢,,,,. To do so, we
cast an optimization problem following the formulation in (15)

(34)

i 1/7T,
min 1/T; (35)
F(uw,Vpe,T,) =0
.t.
“YY Voc 6 (T, T5)) Y7e > tnas
Yu s.t. u = ¢l
where C = 1/7, is the cost function, k = T, is the

design parameter, (7)) = A, 5, ¢ (ri(T;,Tj),7e) is the
conjunction of PSTL formulas that must be satisfied, each
parameterized by 7 = T, and ¢/, refines the environment as-
sumption formula ¢, in Section VI-A. In this case, the system
behavior s is the trace s = (u, Vp¢), where Vp is the output
signal to be observed during simulation, and w spans the set of
all admissible failure injection traces that are consistent with
the environment assumptions in Section VI-A2.

The formulation in (35) includes an infinite set of formulas
that must be satisfied for all admissible failure traces and
values of 7. > t,,4... However, such formulation can be further
simplified, by observing that (35) is equivalent to

(36)

max 1,
T,.>0

?(u, VDC, TT) =0
s.t.

Tg (TWT;) S tmam Vu s.t. u |: (p;

where 77 is defined in (33). Moreover, as shown in
Section VII-C, it is enough to compute Vp(t) and 77 under
the worst case failure scenario, rather than for all possible
failure traces, whenever the worst case assumptions on u(t)
can be determined a priori. Problem (36) can then be solved
by first solving the optimization problem in (33) to compute
7. as a function of 7). and 77} in the worst case input scenario,
and then by computing the value 7" of the controller reaction
time that makes 7 equal to ¢,,,. For the example discussed
in this paper, we used the BREACH toolbox [38] to facilitate
post-processing of simulation traces and verify the satisfaction
of the STL formulas.

VII. DESIGN EXAMPLE AND RESULTS

We illustrate our methodology on the proof-of-concept
design of the primary power distribution of an electric power
system, involving the configuration of contactors to deliver
power to high-voltage AC and DC buses and loads.

TABLE III
LOAD REQUIREMENTS

Component Requirement (W)
LL1 30000
LL2 40000
RL1 20000
RL2 30000
TABLE IV

GENERATOR POWER RATINGS

Component Capability (W)
LGl 70000
LG2 30000
RG1 50000
RG2 40000
APU 100000

A. Topology Synthesis

The topology synthesis algorithm has been implemented in
MATLAB and leverages CPLEX [39] to solve the MILP at each
iteration. We present the result obtained for an electric power
system topology template 7 consisting of two generators, two
AC buses, two rectifiers, two DC buses and two loads on each
side. Tables IIT and IV report the load power requirements and
the generator power ratings in our example; Table V shows the
component costs, while the failure probabilities are reported
in Table VI.

Figures 4 and 5 show the topologies obtained after running
the synthesis algorithm when a set of strategies are sequen-
tially implemented after every MILP iteration to increase
reliability and satisfy the specified level r* = 107°. By
solving the MILP including only connectivity and power flow
constraints, we obtain the topology in Fig. 4, the simplest
possible architecture, which only provides a single path from
a load to a generator (or APU) on each side. Such a topology
presents the highest load and system failure probabilities, as
shown in Table VII.

In Fig. 5 a) and b) horizontal connections are added between
the DC buses and AC buses of the left and right hand sides
of the system. Because increasing the number of components
is expensive, the algorithm first tries to increase reliability by
adding connections among existing components at the cost of
additional contactors. Additional components (e.g. buses and
rectifiers) are finally used in Fig. 5 c) to achieve the desired
specification. In Table VII, we report the achieved reliability
level (failure probability) at load LL1 and the overall achieved
system reliability level rr, as computed for the topologies
in Fig. 4 and 5. The total computation time to generate the
topologies in Fig. 4 and 5 was 19.7 s on an Intel Core i7
2.8-GHz Processor with 6-GB memory. In a typical run, the
number of necessary paths to achieve r* is estimated after the
first MILP step and convergence to the final topology occurs
in no more than two iterations, which reduces the overall
computation time to approximately 10 s.

(a) Topology 2

(b) Topology 3

(c) Topology 4

Fig. 5. Candidate topologies for an electric power system consisting of rows of (from top to bottom) generators, AC buses, rectifier units, DC buses, and DC

loads.

TABLE V
COMPONENT COSTS
Component | Cost
Generator Generator power/100
APU APU power/100
AC-Bus 200
Rectifier 200
DC-Bus 200
Contactor 100
TABLE VI

COMPONENT FAILURE PROBABILITIES

Component | Failure Probability
Generator/APU 10-°
Rectifier 2x 104

B. Control Synthesis

To validate our approach, for each of the four topologies
in Section VII-A, we formalize a set of environment assump-
tions and system specifications to synthesize centralized and
distributed control protocols for an overall reliability level
rs = 7, as discussed in Section VI-C. For the purpose of
brevity, we present the variables and formal specifications,
written in LTL, for the topology depicted in Fig. 5 b) only.

1) Centralized Synthesis: Environment Variables: Genera-
tors LG1, LG2, APU1 and rectifier units LR2 and RR2 are
uncontrolled variables that can switch between healthy (1) and
unhealthy (0).

Controlled Variables: Contactors C; ;° (depicted only as
wires in Fig. 5) are variables that are set to open (0) or closed
(1).

Dependent Variables: Buses are either powered (1) or
unpowered (0) depending on the status of environment and
controlled variables.

Environment Assumption: We allow environment configu-
rations which are mapped back from the function % in Sec-
tion VI-A2 to an overall system reliability level rg. Topology
3 from Fig. 5 b) has a total of 32 environment configurations.

33 and j denote the name of the components contactor C; ; connects.

TABLE VII
LOAD AND SYSTEM FAILURE PROBABILITIES FOR THE TOPOLOGIES IN
FIG. 4 AND 5
Topology Load Failure System Failure
Probability Probability (r1)
1 (Fig. 4) 2x 101 4x10° 1%
2 (Fig. 5) 4 %108 4x10°8
3 (Fig. 5) 4 %108 4x10-8
4 (Fig. 5) 2.6 x 10715 2.6 x 1015

For a reliability level rs = 4 x 1078, h(rg) maps to a
set of 21 allowable configurations. The specification can be
written as a conjunction of all configurations. More compactly,
the environment assumption disallows configurations in which
either both rectifiers fail or all generators fail. Thus, we can
equivalently write the environment assumption for Topology
3 as:

O-((LG1 =0) A (APU1 = 0) A (RG1 =0))
A O-((LR2=0) A (RR2=0)).

No Paralleling of AC Sources: No combination of contactors

can be closed so that a path exists between generators:
O-((Crai,B2 =1) A (Capui,Le2 = 1))
A O=-((Capvi,re2 =1) A (Crei,rB2 = 1)).

Power Status of Buses: A bus can only be powered if
there exists a path (in which a contactor is closed) between
a bus and a generator. In Fig. 5 b), bus LB2 is powered if
either generator LG1 or APU1 is powered, and the contactor
between generator and bus is closed:

D((LGl = 1) N (CLGLLBQ = 1) — (LB? = 1)),

D((APUI e 1) A (CAPULLBQ = 1) — (L32 = 1))

If neither of these two cases is true, then LB2 will be
unpowered. These specifications are written as

O-(((LG1 =1) A (CLei,LB2 = 1)
\/((APUl = 1) VAN (CAPULLBQ = 1))) — (L32 = 0))

Similar specifications may be written for buses RB2, LD2,
and RD1.

Safety-Criticality of Buses: We consider all buses to be
safety-critical; at the abstraction level of LTL, this is equivalent
to require that at no time can any bus be unpowered

O((LB2 = 1) A (RB2 = 1) A (LD2 = 1) A (RD1 = 1)).

The resulting controller has 32 states with a computation
time of 1.6 s on a 2.2-GHz Intel Core Processor with 4-GB
memory.

2) Distributed Synthesis: For the topology in Fig. 5 b),
the distributed control synthesis problem can be solved
by splitting the topology into two subsystems S; and Ss.
The sets £g,,8¢,, and €g,,8g5, contain all environment
and system variables for subsystems S; and Sy, respec-
tively. €g, is composed of generators LG1l, APU1 and
RG1. 8g, contains AC buses LB2, RB2, and contactors
Crci,LB2,Capui, B2, Cra1,rB2, CLB2,RB2. €5, 1S com-
posed of rectifiers LR2, RR2 and AC buses LB2, RB2,
while 8g, contains DC buses LD2, RD1 and contactors
CLRQ’LD27CRRQ’RD1, CLDQ’RDl. We assume the link be-
tween AC buses and rectifier units is a solid wire.

The environment assumption ., for subsystem S; en-
forces that at least one generator will always remain healthy.
Environment assumption ¢, —enforces that at least one rec-
tifier unit will always remain healthy. In addition, it also
assumes that both AC buses will always be powered. This
is an additional guarantee S; must provide to Sy for the
distributed synthesis problem to become realizable. All other
specifications remain the same as the centralized control
problem.

The synthesized controllers for S; and S5 contains 4 and 8
states, respectively. Each controller has a computation time of
approximately 0.5 s on a 2.2-GHz Intel Core Processor with
4-GB memory.

C. Design Space Exploration for Real-Time Performance

Continuous-time models of the plant are implemented in
SIMULINK, by exploiting the SimPowerSystems extension. As
an example, the continuous-time model of a generator consists
of a mechanical engine (turbine), a three-phase synchronous
machine, in addition to the generator control unit, driving the
field voltage of the generator. In addition to timing properties,
our power network model allows measuring current and volt-
age levels at the different circuit loads. It can be discretized
to speed up simulations and can seamlessly interface also
with MATLAB functions or StateFlow models implementing
the controller.

In what follows, we focus on the centralized controller for
topology 3 in Fig. 5 b), and provide results for the design
exploration problem in Section VI-D. In particular, we are
interested in finding the maximum controller reaction time
T as a function of Ty, so that the essential DC bus LD?2
is never out of range for more than t,,,, = 70 ms. Based
on the environment assumptions discussed in Section VII-B,
the worst case failure scenario for the left DC bus LD?2
occurs when cascaded failures in two generators (e.g. LG1 and
APU1) and one rectifier (LR2) correlate so as to maximize
the time the bus voltage is out of the specified range. The

20

LB2 Voltage [V]
=
o &

LR2 Health Status
o
o
I

=)
T

o
o
=1
&
o
o
o
o
N}
o
N
&

©
S

LD2 Voltage [V]
o
s B

' —t . = 70ms

=)
—
=

=)

o
=4
o
&

0.15 02 025
Time [s]

Fig. 6. Real-time requirement violation at the DC bus LD2 due to two
generator faults followed by a rectifier fault.

controller reacts to a generator fault by routing power from
another generator and connects the two DC buses LD2 and
RD1 when one of the rectifiers fails. Therefore, the worst case
failure scenario occurs when the rectifier fault happens at the
end, and any fault after the first one happens right before L D2
fully recovers from the previous fault, while trying to reach
the desired voltage level.

Figure 6 shows the simulated voltage Vips of bus LD2
as a function of time, in the worst case scenario, for T, =
20 ms and Ty = 20 ms, both defined as in Section VI-D. The
waveforms at the top and bottom of the figure are the voltage
signals at the LB2 (AC) and LD2 (DC) buses, respectively.
The signal in the middle represents the health status of LR2.
Both the AC and DC voltages decay to zero because of the
generators’ faults. When a fault is also injected into LR2,
an additional drop in the DC voltage is observed. The red
signal at the bottom of the figure is interpreted as a Boolean
signal, which is high (one) when x in equation (30) holds
(i.e. the requirement is violated) and low (zero) otherwise. To
evaluate the formula (30), we used V; =28 V, e = 2 V and
tmaz = 70 ms. The requirement on the DC bus is violated for
24.4 ms. Therefore, (1, = 20 ms, Ty = 20 ms) is an unsafe
parameter set.

The T, versus T, design space is explored in Fig. 7 and
8 by following the optimization procedure in Section VI-D.
We sampled the parameter space in approximately 4 hours
to obtain a 15 x 15 point grid. The first plot represents the
maximum amount of elapsed time 7;, while the DC bus
voltage is out of range, i.e. for how long the requirement on
the DC bus is violated, as computed in equation (33). Such
a violation period is then compared with the “hard” threshold
tmaz = 70 ms in Fig. 8, thus providing the designer with the
“safe” region (marked in blue in Fig. 8) for the controller
reaction time as a function of the contactor delay. As an
example, for a specific value of Ty = 20 ms the maximum
BPCU reaction time 7" allowed for safe operation is 6.5 ms.

DC-out-of-range Duration (s)

BPCU Reaction Time (s)

Contactor Delay (ms)

Fig. 7. Maximum duration of the violation of the DC bus voltage requirement.

0.03

0.025

e
=3
o

0.015 0.04

BPCU Reaction Time (s)

e
o
=4

0.005

0.01
5 10 15 20 25
Contactor Open/Close Delay {(ms)

Fig. 8. BPCU reaction times and contactor delays in the blue region satisfy
the DC bus requirement.

VIII. CONCLUSIONS

We presented a rigorous platform-based methodology for
the design of an aircraft electric power system. Our flow
consists of three main phases: topology synthesis, control
synthesis, and simulation-based design space exploration and
verification. To express system requirements, we adopt differ-
ent formalisms supported by specialized synthesis and analysis
frameworks. To generate the system topology, we formulate
a mixed integer-linear program that minimizes the overall
cost while satisfying a set of connectivity, power flow and
reliability requirements, expressed in terms of linear arithmetic
constraints on Boolean variables and probabilistic constraints.
To synthesize a controller for a given topology, we leverage
results from reactive synthesis of control logic from linear
temporal logic specifications. We then refine these LTL spec-
ifications into signal-temporal logic constructs to assess the
real-time system performance and explore the design space at a
lower abstraction level, based on high fidelity behavioral mod-
els. Our compositional approach uses contracts to guarantee
independent implementation of system topology and control,
since both topology synthesis and control synthesis rely on a
consistent set of models and design constraints.

We plan to extend our control synthesis algorithms to

21

support richer formal languages (e.g., timed logic, branch-
ing logic), continuous-time specifications and continuous dy-
namics (e.g., transients, network and communication delays).
Moreover, we plan to investigate techniques for automatic
generation of local contracts for the synthesis of distributed
and hierarchical control architectures.

IX. ACKNOWLEDGMENTS

The authors wish to acknowledge Rich Poisson and Eelco
Scholte from United Technologies Corporation (UTC), Mo-
hammad Mozumdar, Antonio lannopollo and Ufuk Topcu for
helpful discussions. This work was supported in part by IBM
and UTC via the iCyPhy consortium and by the TerraSwarm
Research Center, one of six centers supported by the STAR-
net phase of the Focus Center Research Program (FCRP) a
Semiconductor Research Corporation program sponsored by
MARCO and DARPA.

REFERENCES

[1] I Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical and
Avionics Subsystems Integration. Third Edition. Chichester, England:
John Wiley and Sons, Ltd, 2008.

[2] T. Jomier et al., “Final MOET technical report,” Tech. Rep., Dec.
2009. [Online]. Available: http://www.eurtd.com/moet/

[3] K. Sampigethaya and R. Poovendran, “Aviation cyber-physical systems:
Foundations for future aircraft and air transport,” Proc. IEEE, vol. 101,
no. 8, pp. 1834-1855, 2013.

[4] A. Sangiovanni-Vincentelli, “Quo vadis, SLD? Reasoning about the
trends and challenges of system level design,” Proc. IEEE, no. 3, pp.
467-506, 2007.

[5] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr.
Frankenstein: Contract-based design for cyber—physical systems,” in
Conf. Decision and Control, Dec. 2011.

[6] P. Krus and J. Nyman, “Complete aircraft system simulation for aircraft
design - paradigms for modelling of complex systems,” in Int. Congress
of Aeronautical Sciences, 2000.

[7] J. Bals, G. Hofer, A. Pfeiffer, and C. Schallert, “Virtual iron bird -
a multidisciplinary modelling and simulation platform for new aircraft
system architectures,” in German Aerospace Conference, 2005.

[8] Modelica Language. [Online]. Available: http://www.modelica.org

[9] T. Kurtoglu, P. Bunus, and J. de Kleer, “Simulation-based design of
aircraft electrical power systems,” in Int. Modelica Conf., Mar. 2011,
pp. 92-106.

[10] S. Uckun, “META II: Formal co-verification of correctness of large-
scale cyber-physical systems during design,” Tech. Rep., Sep. 2011.
[Online]. Available: http://www.darpa.mil/uploadedFiles/Content/Our_
Work/TTO/Programs/AVM/PARC META Final Report.pdf

[11] OMG Systems Modeling Language. [Online]. Available: http://www.
sysml.org/

[12] M. Masin, A. Sangiovanni-Vincentelli, A. Ferrari, L. Mangeruca,
H. Broodney, L. Greenberg, M. Sambur, D. Dotan, S. Zolotnizky,
and S. Zadorozhniy, “META II: Lingua franca design
and integration language,” Tech. Rep., Aug. 2011. [Online].
Available: http://www.darpa.mil/uploadedFiles/Content/Our_Work/TTO/
Programs/AVM/IBM META Final Report.pdf

[13] A. Pinto, S. Becz, and H. M. Reeve, “Correct-by-construction design of
aircraft electric power systems,” in AIAA Aviation Technology, Integra-
tion, and Operations Conf., 2010.

[14] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Formal synthesis of
embedded control software for vehicle management systems,” in AIAA
Infotech@Aerospace, 2011.

[15] N. Ozay, U. Topcu, and R. M. Murray, “Distributed power allocation
for vehicle management systems,” in Int. Conf. Decision and Control,
2011, pp. 4841-4848.

[16] H. Xu, U. Topcu, and R. M. Murray, “A case study on reactive protocols
for aircraft electric power distribution,” in Int. Conf. Decision and
Control, 2012.

[17] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent
systems: Specification. Springer, 1992, vol. 1.

(18]

[19]

[20]

[21]

[22]
(23]
[24]
[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

E. A. Emerson, “Temporal and modal logic,” Handbook of theoretical
computer science, vol. 2, pp. 995-1072, 1990.

R. G. Michalko, “Electrical starting, generation, conversion and dis-
tribution system architecture for a more electric vehicle,” US Patent
7,439,634 B2, Oct. 2008.

A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. Larsen, “Contracts for systems design,” Proc. IEEE, to appear
2013.

P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli, “Method-
ology for the design of analog integrated interfaces using contracts,”
IEEE Sensors J., vol. 12, no. 12, pp. 3329-3345, Dec. 2012.

A. Pnueli, “The temporal logic of programs,” in Annual Symp. on
Foundations of Computer Science, Nov. 1977, pp. 46-57.

C. Baier and J.-P. Katoen, Principles of Model Checking. Massachus-
setts, USA: The MIT Press, 2008.

R. Alur and T. A. Henzinger, “A really temporal logic,” in Symposium
on Foundations of Computer Science, 1989, pp. 164-169.

R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Syst., vol. 2, no. 4, pp. 255-299, 1990.

O. Maler and D. Nickovic, “Monitoring temporal properties of continu-
ous signals,” in Formal Modeling and Analysis of Timed Systems, 2004,
pp. 152-166.

E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifica-
tion of temporal properties,” in Runtime Verification, 2011, pp. 147-160.
A. Pnueli and R. Rosner, “Distributed reactive systems are hard to
synthesize,” in Proc. Annual Symp. on Foundations of Computer Science,
vol. 2, Oct. 1990, pp. 746-757.

N. Piterman and A. Pnueli, “Synthesis of reactive(1) designs,” in In Proc.
Verification, Model Checking, and Abstract Interpretation. Springer,
2006, pp. 364-380.

A. Pnueli, Y. Saar, and L. D. Zuck, “Jtlv: A framework for developing
verification algorithms,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science, T. Touili, B. Cook, and P. Jackson, Eds.
Springer Berlin Heidelberg, 2010, vol. 6174, pp. 171-174.

T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: a software toolbox for receding horizon temporal logic plan-
ning,” in Proc. Int. Conference on Hybrid Systems: Computation and
Control. New York, NY, USA: ACM, 2011, pp. 313-314.

A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Formal Modeling and Analysis of Timed Systems,
2010, pp. 92-106.

Uppaal-tiga, a synthesis tool for timed games. [Online]. Available:
http://people.cs.aau.dk/~adavid/tiga/

C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, A. Biere, H. van Maaren,
and T. Walsh, Eds. IOS Press, 2009, vol. 4, ch. 8.

C. Hang, P. Manolios, and V. Papavasileiou, “Synthesizing cyber-
physical architectural models with real-time constraints,” in Proc. Int.
Conf. Comput.-Aided Verification, Dec. 2011.

M. R. Lyu et al., Handbook of software reliability engineering. 1EEE
Computer Society Press CA, 1996, vol. 3.

B. Kaiser, P. Liggesmeyer, and O. Mickel, “A new component concept
for fault trees,” in Proc. Australian Workshop on Safety Critical Systems
and Software, 2003.

A. Donzg, “Breach, a toolbox for verification and parameter synthesis of
hybrid systems,” in Proc. Int. Conf. Comput.-Aided Verification. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 167-170.

(2012, Feb.) IBM ILOG CPLEX Optimizer. [Online]. Available:
www.ibm.com/software/integration/optimization/cplex-optimizer/

22

