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Abstract— The goal of this work is to detect faults and
cyber-physical attacks on unmanned aerial vehicles (UAVs)
using dynamic state estimation to determine the nature of
such vulnerabilities. We develop and introduce a distributed
UAV architecture to characterize attacks and their propagation.
Central to the distributed control architecture is a supervisory
controller that relies on active sensing and actioning of control-
lable contactors to collect the needed information for system
state estimation using an adaptive algorithm. Uncertaintyis
reduced through adaptive reconfiguration of the system based
on correlation of measurements from sensor readings and
prior information on system state. We show that an adaptive
greedy strategy algorithm guarantees theoretical worst-case
performance for various cyber-physical attack scenarios.This
is demonstrated by the results of prototype implementations
and simulation on a subgraph of the UAV in the case of a gain
control attack.

Index Terms— Unmanned Aerial Vehicle (UAV), Data in-
tegrity, Cyber-physical attacks, Cybersecurity.

I. I NTRODUCTION AND MOTIVATION

With the ever-growing use of unmanned aerial vehicles
(UAVs) in both military and civilian domains, safety and
the ability to withstand cybersecurity threats is becoming
a foremost problem. UAVs, as well as other cyber-physical
systems (e.g., power grid, transportation, etc.) need to be
designed in a manner that accounts for such attacks. Because
decisions are based on the state of the cyber-physical system,
knowledge gained from data collection and processing are
critical to the success of the UAV mission. Furthermore,
the strategic value of information enclosed in military UAVs
make them valuable targets to espionage, thefts, manipulation
and attacks of all kinds. Security forces around the world
worry of scenarios in which UAVs are hijacked by remote
attacker(s) and are used against soft and sensitive targets.
In recent years, several incidents involving cyber attackson
UAVs are illustrations that this scenario could become reality
soon. In 2009, insurgents in Iraq successfully interceptedand
distributed US military drone video feeds in their network
[5]. In September 2011, a “keylogging” virus infected a US
military UAV fleet at Creech Air Force Base in Nevada
[20], followed three months later by the loss of an RQ-170
Sentinel to Iranian forces [14].

These incidents are a stark reminder of the challenges the
research community and industry face in securing UAVs.
When the system is under cyber attack, effective estimation
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of its state is critical for any successful recovery action or
maneuver. This task proves especially challenging if sensors
are compromised during the attack. Because the state of the
system is heavily dependent on sensor measurements, the
problem of state estimation from sensor readings is crucial
to the safety of the entire system and its mission.

Estimation of UAV state (e.g., position, orientation and
velocity) is an active research topic. A large body of work
exists on the development of estimation techniques and
methods for effective navigation in challenging environments
including GPS-denied environments [3], [18], [24], cluttered
surroundings and neighborhoods [11] and windy conditions
[15]. These approaches rely on localization algorithms based
on variations and extensions of filters such as the Gaussian
Particle Filter [3] and the Extended Kalman Filter (EKF)
[12], [1] to fuse sensor measurements and maintain accurate
state estimates. Researchers have also investigated and ex-
perimented feedback control-based algorithms [2]. However,
Langelaan [11] points out that navigation is only one of
many critical flight tasks. Aviation and communications are
equally critical to successful flights and missions. Thus,
navigation-based estimation approaches of the state of the
UAV are inefficient in capturing the full grasp of the status
of the system, especially when it is under attacks such as the
ones identified above. In such circumstances, it is important
to have an estimation of the system state that accounts
for the internal state of the components in order to: (1)
establish/infer the type and extend of the attack and, (2)
provide lead(s) on possible pathway(s) to effective recovery.
This extension of the scope of the system state parameters
exacerbates the already difficult challenge of optimal sensor
placement in UAVs, especially small ones [23], [19], [8].

Our overall research goal is to provide theoretical guar-
antees on the ability to estimate security threats to cyber-
physical systems in general, and UAVs in particular. The
main objective of this work is to model and develop a
simulation in which an adaptive submodularity-based math-
ematical framework can be used to assess cyber threats
(both internal and external) to the system. Thus, we aim to
obtain state estimates with a limited number of sensors by
utilizing software-based dynamic estimation strategies.We
are particularly interested in detecting and localizing faults
in the system as result of attacks and use that information
to establish and characterize cyber-physical threats. To that
aim, we build from lessons learned in fault diagnostics [17]
and previous applications in aircraft electric control system
[13] to discretize continuous flow of data and signal as
well as health statuses of components in the system before



performing state estimation. Although the application area
targets UAVs, the results of this work can be applied to
multiple cyber-physical systems domains.

We limit the scope of this work to the cruising operational
mode, when the command and control of the UAV system
is performed by the autopilot. We investigate and model
the standalone UAV system as well as security threats
to which it is exposed. The state estimation mathematical
formulation uses a property of set functions called adaptive
submodularity [4]. Finally, simulation will be conducted to
verify the theoretical results.

Fig. 1. High level architecture of a UAV. The system is made ofsix
interconnected subsystems plus the payload (mission dependent). Four of
them exchange data and information with a complex mix of systems in the
environment including other UAVs.

II. SYSTEM AND ATTACK MODELING

A. UAV system modeling for threat analysis

For the purpose of this work, we adopt a cyber-physical
perspective of the UAV system. This view is consistent
with the tight coupling and bidirectional interactions between
cyber (command, control, communication) and physical (sen-
sors, actuators) components in such systems.

1) High level architecture:For the sake of simplification,
we use the UAV airframe as system boundary as shown in
Figure 1. Thus, we model the system as an integrated set
of five modules/subsystems: (1) Guidance System-GS, (2)
Control/Actuation system-CAS , (3) Navigation System-NS,
(4) Communication system-CS and (5) Computing and net-
work platform-CNP. While the boundaries of these modules
are not always clearly defined in all UAV systems, they are
fairly common to the vast majority of UAV models used
in dynamics studies [10], [7] and cyber attack analyses [9],
[6]. The presence and configuration of the payload/mission
system module are dependent on the application and use of
the UAV. Therefore, they are kept outside of the scope of
this work. The environment of the system is complex and
diversified with elements including satellite, ground control
system and other UAVs.

The inner structure of the modules, shown in the sin-
gle line diagram in Figure2, shows the decomposition
into cyber (in white) and physical (in yellow) components

Fig. 2. Simplified single line dataflow diagram of a UAV. The graph
shows the decomposition of the main subsystems into components and their
connections. Cyber components appear in white while physical components
are in yellow. Buses (e.g.CSB1, GSB1) serve as interfaces between
modules while sensors (Si with i ∈ (1, 4)) measure and report the state of
the components and contactors (Cj with j ∈ (1, 17)) control the flow of
signal/data in the system.

and the interactions between them within and beyond the
given module. EntitiesEi, i ∈ (1, 4), NSj , j ∈ (1, 3),
CASk, k ∈ (1, 3), GSl, l ∈ (1, 3), CSm, m ∈ (1, 2)
respectively make up the setE, NS, CAS, GS, andCS
of environment, navigation, control and actuation, guidance
and communication system components. The environment is
composed of the ground system transceiverE1, other UAV
ADS-B transceiversE2, the terrain/target/reference points
E3 and the satelliteE4. All external components (Ei) are
modeled as physical entities while individual subsystems
are hybrid. The navigation system (NS) is composed of
physical components such as the GPS receiver (NS2) and
set of navigation instruments (IMU, magnetometer, etc. )
grouped asNS3 and the filter responsible for NS sensors
fusion (NS1) which is a cyber entity. Inside the control
and actuation (CAS) module, the main system controller
(CAS2) is located between a gain controller (CAS1) and
the set of actuators (CAS3). Similarly, the guidance system
is composed of an ADS-B transceiver (GS1) connected to a
path planner (GS2) which reads in guidance sensors feeds
(GS3), (e.g., vision and radar). Finally, a simplified view
of the communication system shows the transceiver (CS1)
for data exchange with ground systems and communication
protocols (CS2) as main components.

2) Sensors, contactors and bus positioning:The connec-
tions between the components in Figure2 illustrate possible
data exchange paths for the proper operation of the system.
We assume the existence (not shown in the figure) of a
supervisory controller that tracks the state of the system.To
that aim, it needs a set of sensors placed at strategic locations
along the dataflow paths. For the purpose of this research,
they are depicted as follows.



Buses serve as the interface between the module or
subsystem and the rest of the system. A bus here (e.g.:
CSB1, CASB1) is a connection point for data flows (in and
out) for the subsystem components to which it is attached.

Sensorscapture the state of (physical) components in-
teracting directly with active entities within the UAV en-
vironment. The sensor (e.g.,S1, S2, S3) is positioned at
the port communicating with the UAV cyber component.
A sensor can also capture the state of cyber components
that could be the source of cyber infections/attacks (e.g.:
S4). Sensors for internal feedback control are ignored (not
watched by the supervisory controller). Sensor measurements
are normalized to feed the supervisory controller with the
state of the component as either (0) no data/signal flow, (1)
within the acceptable range, or (2) outside the acceptable
range. These measurements are contingent to the sensor
being itself healthy or unhealthy at the time the reading
occurs.

Contactors are “dataflow breakers” that can be opened or
closed and are mounted on connections between components.
Contactors that are controlled (in green) are accessible and
actionable by the supervisor. They are either associated with
sensors for control of (signal/data) flow to/from controlled
components (e. g.:C5, C6, C8, C10) or flows between critical
subsystem interconnections - 1 per interconnection when
many exist (e.g.:C13, C14, C16, C17, C18). Uncontrolled con-
tactors (e.g.:C7, C9, C12) are not accessible/controlled by the
supervisory controller. In the context of this study, an open
uncontrolled contactor can be interpreted as the break of the
communication link between two components as the result
of an attack or some fault in the system.

B. Simplified threat modeling

Elements and connections along the dataflow are suscepti-
ble to attacks. In order to effectively characterize known and
future attacks on the UAV, we first create a threat modeling
framework that makes use of the CPS prospective introduced
in sectionII-A while accounting for the types of attacks and
their propagation mechanisms.

1) Attack modeling and categorization:Researchers have
been actively developing threat modeling techniques and
approaches [21], [28] and investigating cyber attacks [25]on
CPS such as UAVs and automobiles. However, cross domain
or cyber-physical threats are equally important, given thepo-
tential catastrophic consequences of such attacks [22], [16].
Yampolskiy et al. introduce a taxonomy for description of
cross-domain attacks on CPS [26] and a language describing
attacks on such systems [27]. We build from these work to
generate a simplified classification of attacks on our UAV
as modeled in sectionII-A . Attacks are categorized into four
classes, independently of their origin as shown in tableI. An
Influenced elementis the type of the object (source) of the
attack while aVictim elementrefers to the type of the object
that has been influenced by the attack (effect).

2) Attack propagation:In TableI, bothInfluenced element
and Victim elementcan be different, thus, the issue of
propagation of attack between components arises. Therefore,

we ought to be able to understand and describe mechanisms
through which cyber and cyber-physical attacks propagate
in our system. To that aim, we considerphysical interde-
pendenciesbetween components which nicely espouse the
functional perspective of our modeling approach introduced
in sectionII-A . It is also consistent with the system dataflow
structure as per Figure2. Because of their reliance or
dependence on implementation details, other possible inter-
dependencies (geographic, cyber or logical) were left aside in
order to preserve the result of this work from the side effects
of early design commitments. In the case of a gain scheduling
attack, a possible scenario could be as follows. For different
flight modes (take off, landing, and cruising), the autopilot
needs different gains for flight control depending on the UAV
state (mass, altitude, speed, flaps down, etc). For effective
control of the vehicle, the autopilot will require that appro-
priate gains been loaded for each flight phase. An attacker
can successfully access the UAV control system (most likely
on the ground, before the flight) and override/alterate the
pre-computed gains stored in the on-board autopilot. With the
gain controller (CAS1) compromised, the controller (CAS2)
will also be affected as it relies on corrupted gains to
track the guidance path and stabilize the aircraft for the
corresponding flight mode(s). It now sends inappropriate
commands to actuators (CAS3) thus, affecting the system
dynamics with possible multiple safety consequences. This
scenario illustrates a situation in which an attack on a cyber
component propagates to other components through the
interdependency connections and ultimately leads to physical
consequences. Thus, this is clearly a C2P attack (i.e. of
category II). Because of its open architecture, complex and
numerous physical interdependencies, there is almost no end
to the list of possible attacks and threats to UAVs. Therefore,
there might be multiple branchings to the propagation tree
of a given attack. An analysis of vulnerabilities such as
fuzzing attack, GPS spoofing or digital update rate attack
[9] are some illustrations. This requires a more detailed
classification system which is beyond the scope of this work.

III. M ATHEMATICAL PROBLEM FORMULATION AND

STATE ESTIMATION STRATEGY

A. General problem description

We consider a graphG = (N , E) representing the UAV
architecture shown in the data flow diagram in Figure2.
The various system components - communication (CSi with
i ∈ (1, 2)), navigation (NSj with j ∈ (1, 3)), guidance
(GSk with k ∈ (1, 3)), control and actuation (CASl with
l ∈ (1, 3)) - along with their buses and sensors (Si, i ∈
(1, 4)) are elements in the set of nodesN of G. Similarly,
contactors (Ci, with i ∈ (1, 17)) and physical connectors
between components are elements of the set of edgesE .
ContactorsC ⊆ E can either beopenor closed. Entities in the
set of communicationM, navigationI, guidanceU , control
and actuationA are uncontrollable. We callP the set of
components in the graph i.e.P = M∪I ∪U ∪A, with P ⊂
G. The state of components inP can either beunhealthy
(i.e., the component is online but outputting data/signal



Category Description Influenced Element Victim Element Example attacks
I Cyber over Cyber(C2C) Cyber Cyber Buffer overflow, DoS, man in the middle, etc.
II Cyber over Physical(C2P) Cyber Physical Stuxnet, Gain control
III Physical over Cyber(P2C) Physical Cyber Side-channel attack, Sensor jamming
IV Physical over Physical(P2P) Physical Physical Physical tempering, Propagation of C2P, etc.

TABLE I

ATTACK CLASSIFICATION AND CHARACTERIZATION

outside the acceptable operational range),healthy (i.e., the
component is online and outputting data/signal within the
acceptable operational range), oroffline (i.e., the component
is not online and/or there is no data/signal flow). These
states are read by the supervisory controller as introducedin
sectionII-A.2. Nodes associated to pure system level sensing
functionality such asE3, E4 or NS2, NS3, GS3 have only
outgoing edges and no incoming edges. All other edges in
the graph are bidirectional.

SensorsS ⊆ N are special nodes in the graphG. Their
readings are dependent on the status of their components
(in P) as well as the one of the contactor located on the
link between the selected pair of components. For a sensor
reading to be considered, there needs to be an “active” path
between the two nodes of the graph corresponding to the
components involved. In other words, the following three
conditions should be satisfied: (1) there exists a simple path
in G that connects the two nodes, (2) no component along
that path is offline and, (3) all contactors along the path
are closed. Under these conditions, the possible readings
of a sensors ∈ S can be one of the following values (i)
unacceptable valueif there is an active path betweens and
somep ∈ P (not offline) which is unhealthy; (ii)acceptable
valueif, for all pi, pj ∈ P , i 6= j that have an active path tos,
each pair(pi, pj) along such paths is made of components
that are healthy; or (iii)no signal/dataflowif there is no
active path betweens and any componentp ∈ P .

In this framework, the supervisory controller acts as an
embedded controller siting on top of the distributing sensing
and control architecture. It is the ultimate responsible for
the system dynamic state estimation and it is able to detect
faults and abnormal system behaviors resulting from (cyber-
physical) attacks. To that aim, the supervisory controller
controls a subsetC \ C

′

of contactors (i.e.,C5, C6, C8 and
C10 in Figure2).

We express the statex of the system as a valuation of
the state of individual componentsp ∈ P and uncontrollable
contactorse ∈ C′ ⊆ C. Given the limited amount of sensors
and the presence of uncontrollable contactors in the system,
the statex of the system is unknown. Thus, we model it
as a random variableX whose values are possible system
states mapped to sensor readings. We would like to develop
a fault detection adaptive estimation strategy the supervisory
controller will use to figure out the discrete state of the
system for various cyber-physical attack configurations. The
adaptive estimation strategy is performed by the controller
which “acts” on the system by opening and closing control-
lable contactors, then, reads sensors measurements.

B. Mathematical formulation

We base the mathematical formulation from Golovin and
Krause [4]. For further details, we also refer the reader to
[13]. What follows is a summary of the mathematical frame
of the dynamic state estimation problem.

The set of all system states is defined asΩ while the
stateX of the system is modeled as a random variable. A
probability measureP[x] is built on the setΩ based on data
components and reliability levels. The initial state is theun-
known statex0 ∈ Ω and it is assumed unchanged during the
estimation process. We also assume independence between
faults in the system. The rationale behind these assumptions
is that the timescale of the estimation process, by design,
is expected to be much smaller than the failure rates of the
components and the timescales of other controllers in the
system.

1) Formulating the optimal estimation strategy:There
exists a setV of actions v, in the controllable subset of
contactors, and a setY of measurementsy that can be
observed. For an actionv ∈ V , y = µ(v, x) ∈ (Y ) is the
unique outcome of performing actionv if the system is in
the statex. The actions{v0, ..., vt} performed, and outcomes
{y0, ..., yt} observed up until stept, are represented by the
partial realizationψt = {(vi, yi)}i∈{0,...,t}. At each stept,
the probability measureP[x] can be updated by conditioning
it on ψt to obtainP[x | ψt].

An effective estimation process should adaptively elimi-
nate “invalid” states to get to the actual statex0. We define
D(y, v) with y = µ(v, x0), as the set of statesx ∈ Ω that
are indistinguishable fromx0 under the actionv. Similarly,
we introduceSt as the set of states that produce the same
set of outcomes{µ(v0, x0), . . . , µ(vt, x0)} asx0 under the
same set of actions{v0, . . . , vt}.

To represent the uncertainty in the state estimate, we
define an objective functionf : 2V×Y × Ω → R+ that
maps the set of actionsA ⊆ V under statex0 to reward
f(A, x0). A strategyπ is a function from partial realizations
to actions such thatπ(ψt) is the actionvt+1 taken byπ
when observingψt. The fault detection controller is assigned
a budgetk ≪ |V|, indicating the number of steps within
which the estimation process should terminate, starting from
the initial (unknown) statex0. Then, for i = 1, . . . , k, a
sequence of decision, measurement and update operations is
performed as part of the estimation process.

With the goal of reducing the uncertainty ofX represented
by the probability distributionP[x] through performingk



actions, the following reward function is considered:

f(v0:k, x0) = −P[Sk] = −
∑

x∈Sk

P[x]. (1)

Therefore, maximizingf is equivalent to removing as much
probability mass (uncertainty) as possible fromΩ in k steps.
WhenP is uniform,f becomes proportional to the size ofSk.
In such situation, maximizingf is equivalent to minimizing
the number of indistinguishable states. Thus, our ultimate
goal is to devise the estimation strategyπ∗ that delivers the
“best expected estimate” for the state as follows.

π∗ ∈ argmax
π

E[f(Ṽ(π,X), X)], (2)

subject to |Ṽ(π, x)| 6 k for all x, and with expectation
taken with respect toP[x]. Here, Ṽ(π, x) ⊆ V is the set
of all actions performed under the strategyπ; the state of
the system beingx.

2) Greedy strategy and guarantee of its worst case execu-
tion performance :The supervisory controller needs a fault
detection strategy able to plan ahead fork steps. However, in
equation (2), the complexity of the optimal strategy scales up
exponentially withk. The greedy strategy in [13] solves this
issue while maximizing the one-step expected uncertainty
reduction problem. Recent results in adaptive submodularity
are exploited to provide theoretical guarantees for its worst-
case execution performance [4]. In brief, the strategy picks,
at each step, the action maximizing the expected one-step
gain in uncertainty reduction. At a given stept, it uses the
available informationψt to compute the probability measure
P[x | ψt] on the setSt, using the Bayesian update:

P[x | ψt] =

{

P[x]
P[ψt]

∀ x ∈ St
0 elsewhere

(3)

At each stept, the strategy consists of choosing the next
actionvt+1 that maximizes the gain in uncertainty reduction.
The value of the functionf in equation (1) is used as measure
of uncertainty and the benefit is expressed in terms of its
change as a new actionv is chosen. Thus, in other to realize
the estimation goal, we choose to maximize the mean benefit
at each step under the expectation taken with respect to the
updated probability measureP[x | ψt]. This leads to the
greedy strategy :

vt+1 ∈ argmax
v∈V

E[f(v0:t ∪ {v}, X)− f(v0:t, X) | ψt]. (4)

Given the fact that greedy strategies are known to deliver
bad performance arbitrarily, recent results from adaptive
submodularity research come in handy to provide lower
bounds to their performance. With respect to the issue of
guaranteeing worse case performance for the greedy strategy,
a brief overview of those results can be found in the appendix
of [13]. As for the conditions to be satisfied by the reward
functionf used by the greedy strategy in equation (4), it has
to be adaptive and submodular; both properties demonstrated
to be satisfied byf . Therefore, the following result follows.

Theorem 1:For any true statex0 ∈ Ω, the uncertainty
reduction achieved ink steps by the greedy strategy given
in Algorithm 1 is no worse than(1 − 1/e) of what can be
achieved ink steps by any other strategy, including the best
possible strategy [4].

IV. I MPLEMENTATION AND PROTOTYPE SIMULATION

In this section, we illustrate the implementation of the dy-
namic state estimator employing the adaptive submodularity-
based greedy algorithm on a simplified UAV topology such
as the one introduced in sectionII-A , in the context of cyber-
physical attacks.

A. Estimation process

Algorithm 1 Adaptive greedy strategy
Input: Probability measureP[x] on Ω, number of actions to per-

form k. The system is in the statex0 ∈ Ω, fixed and unknown,
and the controlled contactors are in some configurationv0.

Output: Partial realizationψk and the setSk of compatible states
after k actions are taken based on the strategyπgreedy

1: Take the measurementy0 = µ(v0, x0).
2: ψ0 = {(v0, y0)}
3: for t ∈ {1, . . . , k} do
4: vt = πgreedy(ψt−1)
5: Perform actionvt
6: Take the measurementyt = µ(vt, x0)
7: ψt = ψt−1 ∪ {vt, yt}
8: St = St−1 ∩D(yt, vt)
9: ComputeP[x | ψt] (Bayesian update)

10: end for
11: return (ψk, Sk,P[x | ψk])

Algorithm 1 provides a summary of the estimation pro-
cess. In other to improve computation efficiency, some steps
can and will be computed offline. As an illustration, we
consider the inverse mapping from sensor measurements
to appropriate component states. In the absence of a close
form expression for the setsD(y, v) of states for the action-
measurement pairs(v, y) (where v ∈ V is an action and
y ∈ Y is the resulting measurement), its computation will
require a straighforward but thorough and repeated search
for paths on the graphG. Thus, the pairs(v, y) are computed
offline, stored in a database, then accessed on the fly at run
time. Also, the estimation framework supports the encoding
and integration of assumptions about the components, the
system architecture and, most importantly the cyber-physical
attacks. Given the focus of this work on the latter aspect,
we will assume that an attack has happened on an existing
system i.e. a UAV. Assumptions reduce the initial of size of
the state setΩ by eliminating infeasible states.

In order to evaluate the performance of the greedy strategy
in estimating the state of the UAV while under attack, we
systematically test the dynamic estimator in Algorithm1
on increasingly extensive portions of the dataflow diagram
in Figure 2. The selection of the size and boundaries of
the subgraph to consider will remain consistent with the
findings in sectionII-B.2 on attack propagations. For both
simplification and experimentation purpose, we assume a



uniform probability distribution overΩ. Thus, the size of
the feasible set is reduced to the reward functionf (see Eq.
(1)).

Increasingly stringent constraints on weight, wingspans
(volume) and cost - especially on small UAVs - force de-
signers and systems engineers to limit the number of sensors
onboard. In such situations, it is virtually impossible forthe
supervisory controller to guaranty a determinate, uncertainty-
free assessment of the state of the system. We check the
performance of the greedy strategy implemented by the
supervisory controller against a brute force strategy, which
exhaustively and systematically tries every single authorized
action v ∈ V . Despite its obvious advantage of gathering
and providing more information than the greedy strategy,
the brute force strategy is impractical as the size ofV i.e.
|V| can be very big. However, it can serve as performance
benchmark to the greedy strategy. For the rest of this paper,
we perform the test methodology described in Algorithm2.

Algorithm 2 Simplified test methodology
Input: Initial configuration of the controlled contactorsv0 ∈ V

1: for x0 ∈ Ω do
2: Set the graph in the statex0

3: Put the controlled contactors in the configurationv
4: Run the strategy tested (Greedy or brute force strategy)
5: Record the computation time and the value off at the end

for statistics.
6: end for

B. Simulations on a UAV subgraph

1) Simulation set up:We consider the subgraph compris-
ing the UAV communication system (CS) and control and
actuation system (CAS) as delimited by the yellow dashed
box in Figure2. The subgraph is made of 8 nodes (compo-
nents) including, 1 external component (E1), 2 communica-
tion components (CS1, CS2) , 3 control and actuation com-
ponents (CAS1, CAS2, CAS3), 2 buses (CSB1, CASB1)
and 7 contactors (C1, C5, C11, C10, C18, CB1, CB5). Among
the contactors, 3 (C5, C10, C18) are controlled by the super-
visory controller. All sensors are assumed to be healthy (state
= “h” ), i.e., they properly capture and represent the state of
the component/flow they are sensing/measuring. We use the
gain control attack described in sectionII-B.2 as the baseline
for our experiments. For the sake of simplification, we will
assume that the ground system transceiver (E1) is healthy.
Therefore, the configurations in tableII are considered and
encoded during simulation as assumptions on the subgraph
of interest whenever needed for this attack (category II).

2) Simulation results: Simulation platform.Our system
specifications are as follows:Intelr CoreTM i5-1600M 64
bits CPU2.5 GHz, 8.00 Gb RAM. The code is written in
Python. Both brute force and greedy strategies were run on
the very same platform for the configurations identified in
tableII . On this particular example, there are three controlled
contactors. Therefore, the brute force strategy performs|V| =
23 = 8 actions.

Fig. 3. Histogram of the size of the search space. The latter reduces
drastically as assumptions on faults pile up. Also, the performance of both
the brute force and greedy strategies is the same when the greedy strategy
is executed with a horizon length ofk = 6.

Size of the state-space.Figure 3 shows the histogram of
the size of the search space for the configurations identified
in tableII . It appears that the size of the search space, taking
into account the assumptions on faults, reduces drastically as
assumptions pile up. It drops 99%, from the initial 93,000
states under “none” configuration to less than 1,200 states
under “fgca” configuration. Also, the performance of both
strategies is the same when the greedy strategy is executed
with a horizon length ofk = 6. Specifically, for a given
attack, the value of the objective functionf at the end of
the 6 steps using the greedy strategy is the same as after the
brute force strategy with 8 steps.

Average execution time.For this experiment, we select the
“sgca” and “fgca” configurations and summarize in Figure
4(a) and 4(b) the average execution time for the greedy
strategy. Under suspected gain control attack assumption,
in 80% of cases, it takes less than 80 ms to compute
the next best action to perform using the greedy strategy
against 73% of cases and just 6 ms for the full gain con-
trol attack configuration. Overall, the graph shows that the
greedy strategy is very fast. However, the offline computation
takes significantly more time under the “sgca” configuration
(7min 30s) than under the “fgca” configuration (8s). This
discrepancy can be explained by the relative low size of the
search space under “fgca” configuration (1%) as opposed to
the “sgca” configuration (6%) with respect to the full space
as shown in Figure3.

Final value of the reward functionf . Figure5 shows the
performance comparison between greedy and brute force
strategies. It appears that the greedy strategy performs as
well as our benchmark i.e. the brute force strategy. For a
point at coordinates(a, b) in the graphic, ina% of the cases,
there areb or fewer states that can’t be distinguished after the
given strategy runs its normal course of action. The number
of indistinguishable states under a specific attack assumption
remains unchanged. However, it increases as assumptions are
progressively relaxed. Overall, the greedy strategy matches
the performance of the brute force strategy. After thek = 6
steps, the search state is reduced to only 4.2% of its initial



Configuration Description Assumptions encoded
“none” or “unknown” No specific attack assumed None i.e. no assumption on infected component. The full state space is used

“gcd” Gain controller down Only the gain controller (CAS1) is infected
“sgca” Suspected gain controller attack The gain controller (CAS1) andthe controller (CAS2) or the actuator (CAS3) are infected.
“fgca” Full gain controller attack All CAS components i.e. the gain controller (CAS1, the controller (CAS2) and the actuator

(CAS3) are infected.

TABLE II

ATTACK ASSUMPTIONS AND CONFIGURATIONS ENCODING FOR SIMULATION.

(a) Execution time-“sgca”.

(b) Execution time-“fgca”.

Fig. 4. Average execution time for various attack configurations. Under
suspected gain controller attack or “sgca” configuration, it takes less than
80 ms in 80% of cases to compute the next best action to performusing the
greedy strategy against just 6 ms in 73% of cases for the full gain control
attack or “fgca” configuration.

size by the greedy strategy in all configurations except in the
first one (i.e. “none”) where it performs even better with a
reduction to just 1.4% of the initial size.

V. D ISCUSSION

The complexity of the dataflow diagram can grow expo-
nentially with the number of components and connections
between them. Solving the dynamic state estimation problem
on the resulting graph for such complex architectures can
be very computationally and time expensive. Thus, we need
strategies to simplify the graph by reducing its size. When-
ever it is possible, clustering certain components together
into metacomponentsis a possible solution. However, this

Fig. 5. Performance comparison between greedy and brute force strategies.
The greedy strategy performs as well as the benchmark i.e. the brute force
strategy. The number of indistinguishable states under a specific attack
assumption remains unchanged. However, it increases as assumptions are
progressively relaxed.

approach should preserve the quality of the state estimation
process. Specifically, the reduction of the complexity of the
diagram can be achieved by abstracting away connections
between two uncontrolled components that do not have any
sensor on their internal connecting port. In this case, some
of the individual states of the components may become
indistinguishable from what can be measured with the avail-
able sensors. The global behavior of these metacomponents
will be similar to the one of a single basic component.
Therefore, estimating the states of individual components
will require first, the estimation of the state of the metacom-
ponent then, its mapping to possible states of corresponding
basic components. Thus, one needs to make the necessary
adjustments when running state estimation algorithms on the
reduced graph in order to guarantee lossless abstraction in
the transformations.

Simulations have shown that the greedy strategy performs
well with respect to all the metrics considered and in
comparison to the brute force strategy. However, real-world
problems are bigger, more complex and require extensive
computation resources (memory and space on the disk).
Model reduction mechanisms like the one just described
might not be good enough to keep the computation load
in check. As an illustration, we have tried to implement
the full graph in Figure2 in order to support the analysis
of other attacks such as the GPS spoofing and the digital
update rate attacks. It didn’t work out well as we quickly
ran out of memory, even under the most stringent set of



assumptions. Thus, we should consider coupling lossless
abstraction mechanisms to sensors repositioning strategy
in order to successfully scale up this approach to larger
architectures.

Also, we need to stress the trade-off existing between
the number of sensors available and the complexity of the
estimation process. More sensors allows a better estimation
by reducing the uncertainty on the state, but also generates
a growing complexity resulting in the increase of the com-
putation time. Moreover, more sensors leads to more weight
and less (mission) payload for the UAV.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigate cyber-physical attacks on
UAVs and the use of a greedy strategy for dynamic state
estimation to characterize such vulnerabilities. A simplified
and generic UAV architecture accounting for internal signal-
s/dataflows is introduced and used to support both attacks
characterization and propagation and algorithm implemen-
tation and testing. Sensors positioning for effective system
state estimation is considered. The algorithm guarantees the-
oretical worst-case performance for various cyber-physical
attack scenarios. Moreover, it performs as well as the brute
force strategy as demonstrated by the results of prototype
implementations and simulation on a subgraph of the UAV
in the case of gain control attacks. The estimation process
generates either the set of all observable states or, when
applicable, the unique feasible state of the system.

As preliminary results have shown, there is a need to
go beyond the reliance on a simple taxonomy to better
understand and tackle the complexity of the propagation
mechanisms of attacks and handle them in attack models.
Thus, future work should look at candidate formal, UML-
based languages to capture those complex interactions and
attack models as a whole in a systematic way. There is also
a need to formulate and integrate safety requirements in the
estimation process. One illustrative issue is the ability to
gain insight into the algorithm performance bounds under
time-constrained changes of actions. We believe the actual
support of our framework for assumptions is a way forward.
The ability to eliminate unsafe actions from the initial set
can be encoded in a similar way. Finally, the number and
location of sensors in the system topology are architecture
and application-dependent. Integrating sensors placement
studies and analysis in the system design loop will provide an
optimal solution to this problem thus, ultimately ameliorate
the performance of the system state estimation process.
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