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Abstract— The goal of this work is to detect faults and of its state is critical for any successful recovery action o
cyber-physical attacks on unmanned aerial vehicles (UAVS) maneuver. This task proves especially challenging if senso
using dynamic state estimation to determine the nature of 5.6 compromised during the attack. Because the state of the
such vulnerabilities. We develop and introduce a distribued ; .

UAV architecture to characterize attacks and their propagéion. system is heavily dgpen_dent on sensor mea_surer_nents, _the
Central to the distributed control architecture is a supervisory ~ Problem of state estimation from sensor readings is crucial
controller that relies on active sensing and actioning of aatrol-  to the safety of the entire system and its mission.
lable contactors to collect the needed information for sysm Estimation of UAV state (e.g., position, orientation and
state estimation using an adaptive algorithm. Uncertaintyis velocity) is an active research topic. A large body of work
reduced through adaptive reconfiguration of the system bask . . . 4
on correlation of measurements from sensor readings and exists on the de}’e'opme”t_ Of_eSt'mat'on. teChn.'queS and
prior information on system state. We show that an adaptive Methods for effective navigation in challenging enviromtse
greedy strategy algorithm guarantees theoretical worstase including GPS-denied environments [3], [18], [24], cluae
performance for various cyber-physical attack scenariosThis  surroundings and neighborhoods [11] and windy conditions
is demonstrated by the results of prototype implementatios [15]. These approaches rely on localization algorithmetas
and simulation on a subgraph of the UAV in the case of a gain o . ) .
on variations and extensions of filters such as the Gaussian

control attack.
Index Terms— Unmanned Aerial Vehicle (UAV), Data in- PartiC|e Flltel’ [3] and the EXtended Kalman F|Iter (EKF)

tegrity, Cyber-physical attacks, Cybersecurity. [12], [1] to fuse sensor measurements and maintain accurate
state estimates. Researchers have also investigated and ex
[. INTRODUCTION AND MOTIVATION perimented feedback control-based algorithms [2]. Howeve

With the ever-growing use of unmanned aerial vehiclesangelaan [11] points out that navigation is only one of
(UAVs) in both military and civilian domains, safety andmany critical flight tasks. Aviation and communications are
the ability to withstand cybersecurity threats is becomin§qually critical to successful flights and missions. Thus,
a foremost problem. UAVs, as well as other Cyber_physing]avigation-based estimation approaches of the state of the
systems (e.g., power grid, transportation, etc.) need to MAV are inefficient in capturing the full grasp of the status
designed in a manner that accounts for such attacks. Beca@ééhe system, especially when it is under attacks such as the
decisions are based on the state of the cyber-physicahsystenes identified above. In such circumstances, it is importan
knowledge gained from data collection and processing af@ have an estimation of the system state that accounts
critical to the success of the UAV mission. Furthermorefor the internal state of the components in order to: (1)
the strategic value of information enclosed in military WAy €establish/infer the type and extend of the attack and, (2)
make them valuable targets to espionage, thefts, manipulat Provide lead(s) on possible pathway(s) to effective reppve
and attacks of all kinds. Security forces around the worldhis extension of the scope of the system state parameters
worry of scenarios in which UAVs are hijacked by remoteexacerbates the already difficult challenge of optimal sens
attacker(s) and are used against soft and sensitive targé@cement in UAVs, especially small ones [23], [19], [8].

In recent years, several incidents involving cyber attamks ~ Our overall research goal is to provide theoretical guar-
UAVs are illustrations that this scenario could becomeiteal antees on the ability to estimate security threats to cyber-
soon. In 2009, insurgents in Iraq successfully intercepteti  Physical systems in general, and UAVs in particular. The
distributed US military drone video feeds in their networkmain objective of this work is to model and develop a
[5]. In September 2011, a “keylogging” virus infected a ussimulation in which an adaptive submodularity-based math-
military UAV fleet at Creech Air Force Base in Nevadaeématical framework can be used to assess cyber threats
[20], followed three months later by the loss of an RQ_lmboth internal and external) to the system. Thus, we aim to
Sentinel to Iranian forces [14]. obtain state estimates with a limited number of sensors by

These incidents are a stark reminder of the challenges tHElizing software-based dynamic estimation strategiae.

research community and industry face in securing UAv&re particularly interested in detecting and localizinglts

When the system is under cyber attack, effective estimatidh the system as result of attacks and use that information
to establish and characterize cyber-physical threatsh@b t
8Department of Civil and Environmental Engineering, Unsigr  aim, we build from lessons learned in fault diagnostics [17]
ffpet“ﬂlzrg'gﬁ;d e%ol'J'ege Park, MD 20742,  correspondenceiang previous applications in aircraft electric controlteys
TDepartment of Aerospace Engineering, University of MarglaCollege [13] to discretize continuous flow of data and S|gna| as

Park, MD 20742 well as health statuses of components in the system before



performing state estimation. Although the applicationaare 7 J > (

targets UAVs, the results of this work can be applied t
multiple cyber-physical systems domains.

We limit the scope of this work to the cruising operationa
mode, when the command and control of the UAV syster
is performed by the autopilot. We investigate and mode
the standalone UAV system as well as security threa
to which it is exposed. The state estimation mathematic
formulation uses a property of set functions called adaptiv
submodularity [4]. Finally, simulation will be conducted t | ./
verify the theoretical results. L& iR IH

UAV

UAV

i
I}
E

Fig. 2.  Simplified single line dataflow diagram of a UAV. Theagh
shows the decomposition of the main subsystems into cormp®iaad their
\ connections. Cyber components appear in white while physmmponents
{_! are in yellow. Buses (e.gCSB1,GSB1) serve as interfaces between
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and the interactions between them within and beyond the
Fig. 1. High level architecture of a UAV. The system is madesof ~given module. Entitiest;, i € (1,4), NS;, j € (1,3),
interconnected subsystems plus the payload (mission dep8n Four of  (C'AS,, k € (173), GS;, 1 € (1,3), CS,,, m € (1,2)
them exchange data and information with a complex mix ofesystin the .
environment including other UAVs. respec_uvely make u_p the sét, NS, CAS, GS’_ and C_S
of environment, navigation, control and actuation, guman
and communication system components. The environment is
[I. SYSTEM AND ATTACK MODELING composed of the ground system transceikgr other UAV
A. UAV system modeling for threat analysis ADS-B transceiversE,, the terrain/target/reference points

For the purnose of this work. we adoot a cvber-ph sicﬁ3 and the satellitelZy. All external componentsH;) are
purp ' p yber-phy odeled as physical entities while individual subsystems

perspective of the UAV system. This view is consistentt”e hybrid. The navigation systemiV6) is composed of
with the tight coupling and bidirectional interactionsweéen hysical components such as the GPS receidés,) and

cyber (command, control, communication) and physical-(se@et of navigation instruments (IMU, magnetometer, etc. )

sors, actuators) components in suchsystems. 415,564 asVS; and the filter responsible for NS sensors
1) High level arc_h|tecture.For the sake of simplification, fusion (N'S;) which is a cyber entity. Inside the control

we use the UAV airframe as system boundary as shown ULy 4ctyation @ AS) module, the main system controller

Figl_Jre 1. Thus, we model the system as an integrated s AS,) is located between a gain controllef 4.S;) and
of five modules/subsystems: (1) Guidance System-GS, (f)e set of actuators{45;). Similarly, the guidance system

Control/Actuation system-CAS , (3) Navigation System-NSg composed of an ADS-B transceive§,) connected to a

(4) Communication system-CS and (5) Computing and néfi, planner ¢S,) which reads in guidance sensors feeds
work platform-CNP. While the boundaries of these moduleegsg) (e.g., vision and radar). Finally, a simplified view

are not always clearly defined in all UAV systems, they args tha communication system shows the transceidés, |

fairly common to the vast majority of UAV models useds, qata exchange with ground systems and communication

in dynamics studies [10], [71 and_cyber attack analysgs [%rotocols (C'S5) as main components.

[6]. The presence and configuration of the payload/mission

system module are dependent on the application and use oR) Sensors, contactors and bus positionirithe connec-

the UAV. Therefore, they are kept outside of the scope dfons between the components in Figarélustrate possible

this work. The environment of the system is complex andata exchange paths for the proper operation of the system.

diversified with elements including satellite, ground ecoht We assume the existence (not shown in the figure) of a

system and other UAVSs. supervisory controller that tracks the state of the sysfem.
The inner structure of the modules, shown in the sinthat aim, it needs a set of sensors placed at strategic dosati

gle line diagram in Figure2, shows the decomposition along the dataflow paths. For the purpose of this research,

into cyber (in white) and physical (in yellow) componentshey are depicted as follows.



Buses serve as the interface between the module awxe ought to be able to understand and describe mechanisms
subsystem and the rest of the system. A bus here (e.through which cyber and cyber-physical attacks propagate
CSB;,CASB;) is a connection point for data flows (in andin our system. To that aim, we considghysical interde-
out) for the subsystem components to which it is attachedpendenciedetween components which nicely espouse the

Sensorscapture the state of (physical) components infunctional perspective of our modeling approach introduce
teracting directly with active entities within the UAV en- in sectionll-A. It is also consistent with the system dataflow
vironment. The sensor (e.gS1,S2,53) is positioned at structure as per Figur@. Because of their reliance or
the port communicating with the UAV cyber componentdependence on implementation details, other possible-inte
A sensor can also capture the state of cyber componentspendencies (geographic, cyber or logical) were leftesaisid
that could be the source of cyber infections/attacks (e.gorder to preserve the result of this work from the side effect
S4). Sensors for internal feedback control are ignored (natf early design commitments. In the case of a gain scheduling
watched by the supervisory controller). Sensor measurtsmeattack, a possible scenario could be as follows. For differe
are normalized to feed the supervisory controller with thélight modes (take off, landing, and cruising), the autadpilo
state of the component as either (0) no data/signal flow, (heeds different gains for flight control depending on the UAV
within the acceptable range, or (2) outside the acceptabdtate (mass, altitude, speed, flaps down, etc). For eféectiv
range. These measurements are contingent to the sensontrol of the vehicle, the autopilot will require that appr
being itself healthy or unhealthy at the time the readingriate gains been loaded for each flight phase. An attacker
occurs. can successfully access the UAV control system (most likely

Contactors are “dataflow breakers” that can be opened oon the ground, before the flight) and override/alterate the
closed and are mounted on connections between componept&-computed gains stored in the on-board autopilot. Viigh t
Contactors that are controlled (in green) are accessilile again controller C AS7) compromised, the controlle€(ASx)
actionable by the supervisor. They are either associatdd wiwill also be affected as it relies on corrupted gains to
sensors for control of (signal/data) flow to/from contrdlle track the guidance path and stabilize the aircraft for the
components (e. g€, Cg, Cg, C1p) or flows between critical corresponding flight mode(s). It now sends inappropriate
subsystem interconnections - 1 per interconnection wherommands to actuator€’(4Ss) thus, affecting the system
many exist (e.g.C13, C14, C16, C17, C18). Uncontrolled con- dynamics with possible multiple safety consequences. This
tactors (e.g.C7, Cy, C12) are not accessible/controlled by thescenario illustrates a situation in which an attack on a cybe
supervisory controller. In the context of this study, anmpecomponent propagates to other components through the
uncontrolled contactor can be interpreted as the breakeof tinterdependency connections and ultimately leads to phaysi
communication link between two components as the resuibnsequences. Thus, this is clearly a C2P attack (i.e. of

of an attack or some fault in the system. category Il). Because of its open architecture, complex and
o ) numerous physical interdependencies, there is almostdo en
B. Simplified threat modeling to the list of possible attacks and threats to UAVs. Thersfor

Elements and connections along the dataflow are susceptiere might be multiple branchings to the propagation tree
ble to attacks. In order to effectively characterize knowd a of a given attack. An analysis of vulnerabilities such as
future attacks on the UAV, we first create a threat modelinfuzzing attack, GPS spoofing or digital update rate attack
framework that makes use of the CPS prospective introduc¢@] are some illustrations. This requires a more detailed
in sectionll-A while accounting for the types of attacks andclassification system which is beyond the scope of this work.
their propagation mechanisms.

1) Attack modeling and categorizatiofResearchers have
been actively developing threat modeling techniques and o
approaches [21], [28] and investigating cyber attacks {25] A. General problem description
CPS such as UAVs and automobiles. However, cross domainWe consider a grapld = (N, £) representing the UAV
or cyber-physical threats are equally important, givenpgire  architecture shown in the data flow diagram in Figire
tential catastrophic consequences of such attacks [2@], [1 The various system components - communicat@s,;(with
Yampolskiy et al. introduce a taxonomy for description of € (1,2)), navigation (V.S; with j € (1,3)), guidance
cross-domain attacks on CPS [26] and a language describif@®S, with k£ € (1,3)), control and actuation({AS; with
attacks on such systems [27]. We build from these work tb € (1,3)) - along with their buses and sensois;,(i €
generate a simplified classification of attacks on our UAV1,4)) are elements in the set of nod&s of G. Similarly,
as modeled in sectioi-A. Attacks are categorized into four contactors ¢;, with ¢ € (1,17)) and physical connectors
classes, independently of their origin as shown in thbkn  between components are elements of the set of eédges
Influenced elemeris the type of the object (source) of the Contactor C £ can either b@penor closed Entities in the
attack while avictim elementefers to the type of the object set of communicatiooM, navigationZ, guidance/, control
that has been influenced by the attack (effect). and actuation4 are uncontrollable. We calP the set of

2) Attack propagationin Tablel, bothinfluenced element components in the graph i.® = MUZUU U A, with P C
and Victim elementcan be different, thus, the issue ofG. The state of components iR can either beunhealthy
propagation of attack between components arises. Therefofi.e., the component is online but outputting data/signal

IIl. M ATHEMATICAL PROBLEM FORMULATION AND
STATE ESTIMATION STRATEGY



Category Description Influenced Element | Victim Element Example attacks
] Cyber over Cyber(C2C) Cyber Cyber Buffer overflow, DoS, man in the middle, et¢.
Il Cyber over Physical(C2P) Cyber Physical Stuxnet, Gain control
11} Physical over Cyber(P2C) Physical Cyber Side-channel attack, Sensor jamming
\Y] Physical over Physical(P2P| Physical Physical Physical tempering, Propagation of C2P, efc.
TABLE |

ATTACK CLASSIFICATION AND CHARACTERIZATION

outside the acceptable operational randg®althy (i.e., the B. Mathematical formulation
component is online and outputting data/signal within the
acceptable operational range),affline (i.e., the component ~ We base the mathematical formulation from Golovin and
is not online and/or there is no data/signal flow). ThesKrause [4]. For further details, we also refer the reader to
states are read by the supervisory controller as introdinced[13]. What follows is a summary of the mathematical frame
sectionll-A.2. Nodes associated to pure system level sensirif the dynamic state estimation problem.
functionality such astis, E4 or NS;, NS3,GS3 have only The set of all system states is defined @swhile the
outgoing edges and no incoming edges. All other edges #iate X of the system is modeled as a random variable. A
the graph are bidirectional. probability measuré|[x] is built on the sef? based on data
SensorsS C N are special nodes in the gragh Their components and reliability levels. The initial state is the
readings are dependent on the status of their componeRrtfown stater, € 2 and it is assumed unchanged during the
(in P) as well as the one of the contactor located on thestimation process. We also assume independence between
link between the selected pair of components. For a sensallts in the system. The rationale behind these assungption
reading to be considered, there needs to be an “active” paththat the timescale of the estimation process, by design,
between the two nodes of the graph corresponding to the expected to be much smaller than the failure rates of the
components involved. In other words, the following three&omponents and the timescales of other controllers in the
conditions should be satisfied: (1) there exists a simpla pagystem.
in G that qonnepts the two nodes, (2) no component along 1) Formulating the optimal estimation strategyfhere
that path is offline and, (3) aII_ contactors a'O'_‘g the p"?‘tgxists a setV of actionsv, in the controllable subset of
are closed. Under these conditions, the p_035|ble reaq'n@&ntactors, and a sep of measurements that can be
of a sensors € S can be one of the following values (i) observed. For an action € V, y = u(v,z) € (Y) is the
unacceptable valuef_ there IS an active path pgtweenand unigue outcome of performing actionif the system is in
somep € P (not offline) which is unhealthy; (iipcceptable oo sate: The actiongvy, ..., v;} performed, and outcomes

valur(]e|f, for all pi’pﬂi EP.i #hj th?]t have ar:jacufve pathto = ..} observed up until step are represented by the
each pair(p;, p;) along such paths is made of components o' o2 i ationy, — {05,y hreo.. o1 At each steg,

tha_t are healthy; or (iiijno signal/dataflowif there is no 4 . probability measurg[z] can be updated by conditioning
active path betweern and any component € P. it on ¢, to obtainP[z | ¢

In this framework, the supervisory controller acts as an . o . -
embedded controller siting on top of the distributing segsi An“.effec_tn,{e estimation process should adaptlvely_ellml-
and control architecture. It is the ultimate responsible fohate mva_lld states to get to the actual state We define
the system dynamic state estimation and it is able to detef¥;v) With y = yi(v,z0), as the set of states € {2 that
faults and abnormal system behaviors resulting from (c—ybe?re _|nd|st|ngU|shabIe from, under the actiorv. Similarly,
physical) attacks. To that aim, the supervisory controllef’€ introduces; as the set of states that produce the same
controls a subset \ ¢’ of contactors (i.e.Cs, s, Cs and ¢ of outcomed i(vo, zo), .- , pi(ve, 20)} @S zo Under the
Cho in Figure2). same set of action&u, ..., v:}.

We express the state of the system as a valuation of TO represent the uncertainty in the state estimate, we
the state of individual componentss P and uncontrollable define an objective functiorf : 2V*Y x Q@ — R, that
contactorse € C’ C C. Given the limited amount of sensorsmaps the set of actiond C V under stater, to reward
and the presence of uncontrollable contactors in the systeif{4, zo). A strategyr is a function from partial realizations
the statex of the system is unknown. Thus, we model itt0 actions such thatr(v,) is the actionv.;; taken byn
as a random variabl& whose values are possible systenvhen observing):. The fault detection controller is assigned
states mapped to sensor readings. We would like to devel@pbudgeti < |V, indicating the number of steps within
a fault detection adaptive estimation strategy the superyi which the estimation process should terminate, startiomfr
controller will use to figure out the discrete state of thdhe initial (unknown) stater,. Then, fori = 1,....k, a
system for various cyber-physical attack configuratioriee T sequence of decision, measurement and update operations is
adaptive estimation strategy is performed by the controll@€erformed as part of the estimation process.
which “acts” on the system by opening and closing control- With the goal of reducing the uncertainty &f represented
lable contactors, then, reads sensors measurements. by the probability distributionP[x] through performingk



actions, the following reward function is considered: Theorem 1:For any true statery € €2, the uncertainty
reduction achieved ik steps by the greedy strategy given

f(Wouk, w0) = —P[Sk] = = > Pla]. (1) in Algorithm 1 is no worse tharfl — 1/e) of what can be
TESk achieved ink steps by any other strategy, including the best

Therefore, maximizingf is equivalent to removing as much possible strategy [4].

probability mass (uncertainty) as possible fréhin & steps.
WhenP is uniform, f becomes proportional to the size$)f.
In such situation, maximizing is equivalent to minimizing  In this section, we illustrate the implementation of the dy-
the number of indistinguishable states. Thus, our ultimatgamic state estimator employing the adaptive submodyarit
goal is to devise the estimation strategt that delivers the based greedy algorithm on a simplified UAV topology such

“best expected estimate” for the state as follows. as the one introduced in sectidrA , in the context of cyber-

- physical attacks.
7 € argmax E[f(V(r, X), X)], 2

IV. IMPLEMENTATION AND PROTOTYPE SIMULATION

A. Estimation process
subject to|[V(r,z)| < k for all r, and with expectation
taken wit_h respect td[z]. Here, V(m,z) C V is the set Algorithm 1 Adaptive greedy strategy
of all actions performed under the strategy the state of |5t Probability measure [z] on 2, number of actions to per-
the system being:. form k. The system is in the state € €2, fixed and unknown,
2) Greedy strategy and guarantee of its worst case execu- and the controlled contactors are in some configuration
detection strategy able to plan ahead#®teps. However, in . after k actions are taken_based on the strategy.cay
. - . 1. Take the measuremept = u(vo, o).
equation 2), the complexity of the optimal strategy scales up ». bo = {(vo, o)}
exponentially withk. The greedy strategy in [13] solves this 3: for t € {1,...,k} do
issue while maximizing the one-step expected uncertainty: V¢ = Tgreedy (P—1)
reduction problem. Recent results in adaptive submoduylari > _Fr’elzfo”r‘]“ actionv; B
are exploited to provide theoretical guarantees for itsstvor 1/1? © L}e 1m5?iur2:'}]em = pu(ve, zo)
. . B . — t— ty
case execution performance [4]. In brief, the strategyqiick g g, =5, , N D(y,, »)
at each step, the action maximizing the expected one-step:  Computep [z | ;] (Bayesian update)
gain in uncertainty reduction. At a given stepit uses the 10: end for
available information); to compute the probability measure 11: returmn (¢, Sk, B[z | ¢x])
P[z | v] on the setS;, using the Bayesian update:

Pl] Vres Algorithm 1 prpvides a summary of th_e_estimation pro-
Plz | ¢:] = Pl:] ¢ (3) cess. In other to improve computation efficiency, some steps
{ 0 elsewhere can and will be computed offline. As an illustration, we

gonsider the inverse mapping from sensor measurements

At each stept, the strategy consists of choosing the nex X
actionv;,, that maximizes the gain in uncertainty reduction!© @PPropriate component states. In the absence of a close
The value of the functiorf in equation {) is used as measure O™ expression for the seS(y, v) of states for the action-

of uncertainty and the benefit is expressed in terms of if§€asurement pairév,y) (wherev € V' is an action and
change as a new actianis chosen. Thus, in other to realize € Y is the resuling measurement), its computation will

the estimation goal, we choose to maximize the mean bendfiduire a straighforward but thorough and repeated search

at each step under the expectation taken with respect to tip Paths on the grap&y. Thus, the pair¢v, y) are computed

updated probability measu[z | ). This leads to the qfﬂine, stored in a_data_lbase, then accessed on the fly at_ run
greedy strategy : t|me._AIso, the estimation frgmework supports the encoding
and integration of assumptions about the components, the
Vi1 € argmax E[f (vo. U {v}, X) — f(vos, X) | ¥:]- (4) system architecture and, most importantly the cyber-miaysi
vey attacks. Given the focus of this work on the latter aspect,
Given the fact that greedy strategies are known to deliveve will assume that an attack has happened on an existing
bad performance arbitrarily, recent results from adaptiveystem i.e. a UAV. Assumptions reduce the initial of size of
submodularity research come in handy to provide lowdhe state sef) by eliminating infeasible states.
bounds to their performance. With respect to the issue of In order to evaluate the performance of the greedy strategy
guaranteeing worse case performance for the greedy strateip estimating the state of the UAV while under attack, we
a brief overview of those results can be found in the appendsystematically test the dynamic estimator in Algoritim
of [13]. As for the conditions to be satisfied by the rewardn increasingly extensive portions of the dataflow diagram
function f used by the greedy strategy in equatidj (t has in Figure 2. The selection of the size and boundaries of
to be adaptive and submodular; both properties demongdtrathe subgraph to consider will remain consistent with the
to be satisfied byf. Therefore, the following result follows. findings in sectionll-B.2 on attack propagations. For both
simplification and experimentation purpose, we assume a



uniform probability distribution ovef). Thus, the size of 100 100%
the feasible set is reduced to the reward functfofsee Eqg.
(1))

Increasingly stringent constraints on weight, wingspan
(volume) and cost - especially on small UAVs - force de:
signers and systems engineers to limit the number of sens:
onboard. In such situations, it is virtually impossible fbe
supervisory controller to guaranty a determinate, unaeyta
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free assessment of the state of the system. We check 1% e
performance of the greedy strategy implemented by tt . - — 1%
supervisory controller against a brute force strategy,ctvhi "unknown" — "sgea” gea®
exhaustively and systematically tries every single altieolr Attack

actionv € V. Despite its obvious advamage of gatherln&ig 3. Histogram of the size of the search space. The lagduaes

and providing more information than the greedy strategyiastically as assumptions on faults pile up. Also, thegserance of both
the brute force strategy is impractical as the sizeé/ofe. the brute force and greedy strategies is the same when teeygstrategy

V| can be very big. However, it can serve as performandg ®ecuted with a horizon length &= 6.
benchmark to the greedy strategy. For the rest of this paper,

we perform the test methodology described in AlgoritBm ) ) )
Size of the state-spacEigure 3 shows the histogram of

the size of the search space for the configurations identified
in tablell. It appears that the size of the search space, taking

Algorithm 2 Simplified test methodology
Input: Initial configuration of the controlled contactors € V

1: for zo € Q do into account the assumptions on faults, reduces drastiasll

2: Set the graph in the state assumptions pile up. It drops 99%, from the initial 93,000
3 Put the controlled contactors in the configuration states under “none” configuration to less than 1,200 states
4: Run the strategy tested (Greedy or brute force strategy) ynder “fgca” configuration. Also, the performance of both
5: Record the computation time and the valuefadt the end

: o strategies is the same when the greedy strategy is executed

for statistics. . . e .
6: end for with a horizon length oft = 6. Specifically, for a given
attack, the value of the objective functighat the end of
the 6 steps using the greedy strategy is the same as after the
brute force strategy with 8 steps.

Average execution tim&or this experiment, we select the

1) Simulation set upWe consider the subgraph compris-“sgca” and “fgca” configurations and summarize in Figure
ing the UAV communication systenC(S) and control and 4(a) and 4(b) the average execution time for the greedy
actuation system (CAS) as delimited by the yellow dashestrategy. Under suspected gain control attack assumption,
box in Figure2. The subgraph is made of 8 nodes (compoin 80% of cases, it takes less than 80 ms to compute
nents) including, 1 external componett; ), 2 communica- the next best action to perform using the greedy strategy
tion componentsS;, C'S3) , 3 control and actuation com- against 73% of cases and just 6 ms for the full gain con-
ponents CAS;,CAS,,CAS3), 2 buses ¢SB,,CASB;) trol attack configuration. Overall, the graph shows that the
and 7 contactord{;, Cs, C11, C19, C18, CB1,CBs). Among  greedy strategy is very fast. However, the offline compatati
the contactors, 3({s5, C1o, C1s) are controlled by the super- takes significantly more time under the “sgca” configuration
visory controller. All sensors are assumed to be healtlagdst (7min 30s) than under the “fgca” configuration (8s). This
=*h"), i.e., they properly capture and represent the stéte aiscrepancy can be explained by the relative low size of the
the component/flow they are sensing/measuring. We use tbearch space under “fgca” configuratidi¥) as opposed to
gain control attack described in sectid+B.2 as the baseline the “sgca” configuration6%) with respect to the full space
for our experiments. For the sake of simplification, we willas shown in Figuré.
assume that the ground system transceivgs) (s healthy. Final value of the reward functiorf. Figure 5 shows the
Therefore, the configurations in tableare considered and performance comparison between greedy and brute force
encoded during simulation as assumptions on the subgragfategies. It appears that the greedy strategy performs as
of interest whenever needed for this attack (category Il). well as our benchmark i.e. the brute force strategy. For a

2) Simulation results: Simulation platforn©ur system point at coordinatega, b) in the graphic, im% of the cases,
specifications are as followgntel® Core™ i5-1600M 64 there are or fewer states that can’t be distinguished after the
bits CPU 2.5 GHz, 8.00 Gb RAM. The code is written in given strategy runs its normal course of action. The number
Python. Both brute force and greedy strategies were run oof indistinguishable states under a specific attack assampt
the very same platform for the configurations identified imremains unchanged. However, it increases as assumptiens ar
tablell . On this particular example, there are three controlledrogressively relaxed. Overall, the greedy strategy nestch
contactors. Therefore, the brute force strategy perféotihs:  the performance of the brute force strategy. After khe 6
23 = 8 actions. steps, the search state is reduced to only 4.2% of its initial

B. Simulations on a UAV subgraph



Configuration Description Assumptions encoded
“none” or “unknown” No specific attack assumed | None i.e. no assumption on infected component. The fulestphce is used
“gcd” Gain controller down Only the gain controller @ AS1) is infected
“sgca” Suspected gain controller attagk The gain controller ' A.S1) andthe controller C'AS2) or the actuator ' AS3) are infected.
“fgca” Full gain controller attack All CAS components i.e. the gain controllér 457, the controller C'AS>) and the actuator]
(CAS3) are infected.

TABLE Il
ATTACK ASSUMPTIONS AND CONFIGURATIONS ENCODING FOR SIMULAION.

5,000
78.4%

4,000

3,000

2,000

16.1%

Occurence (number of cases)

1,000
3.5% .
. . -" 1.4% 0.5% 0.1%
75-80 81-85 86-90 91-95 96-100 >=101
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(a) Execution time-“sgca”.
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(b) Execution time-“fgca”.

Fig. 4. Average execution time for various attack configoret. Under
suspected gain controller attack or “sgca” configuratiortakes less than
80 ms in 80% of cases to compute the next best action to perdsing the

greedy strategy against just 6 ms in 73% of cases for the &l gontrol

attack or “fgca” configuration.

14

12

10

Number indistinguishable states (x100)
[+

"fgca" "sgca” "ged" "unknown"
Attack
“O~Greedy =’rBrute force

Fig. 5. Performance comparison between greedy and brute &irategies.
The greedy strategy performs as well as the benchmark eebriite force
strategy. The number of indistinguishable states under exifgp attack
assumption remains unchanged. However, it increases ampssns are
progressively relaxed.

approach should preserve the quality of the state estimatio
process. Specifically, the reduction of the complexity @& th
diagram can be achieved by abstracting away connections
between two uncontrolled components that do not have any
sensor on their internal connecting port. In this case, some
of the individual states of the components may become
indistinguishable from what can be measured with the avail-
able sensors. The global behavior of these metacomponents
will be similar to the one of a single basic component.
Therefore, estimating the states of individual components
will require first, the estimation of the state of the metacom
ponent then, its mapping to possible states of correspgndin
basic components. Thus, one needs to make the necessary
adjustments when running state estimation algorithms en th
reduced graph in order to guarantee lossless abstraction in

size by the greedy strategy in all configurations exceptén trthe transformations.
first one (i.e. “none”) where it performs even better with a Simulations have shown that the greedy strategy performs

reduction to just 1.4% of the initial size.

V. DISCUSSION

well with respect to all the metrics considered and in
comparison to the brute force strategy. However, real-avorl
problems are bigger, more complex and require extensive

The complexity of the dataflow diagram can grow expoeomputation resources (memory and space on the disk).
nentially with the number of components and connectionglodel reduction mechanisms like the one just described
between them. Solving the dynamic state estimation problemight not be good enough to keep the computation load
on the resulting graph for such complex architectures can check. As an illustration, we have tried to implement
be very computationally and time expensive. Thus, we nedbte full graph in Figure? in order to support the analysis
strategies to simplify the graph by reducing its size. Whermsf other attacks such as the GPS spoofing and the digital
ever it is possible, clustering certain components togethepdate rate attacks. It didn't work out well as we quickly
into metacomponentis a possible solution. However, thisran out of memory, even under the most stringent set of



assumptions. Thus, we should consider coupling losslesg]
abstraction mechanisms to sensors repositioning strategy
in order to successfully scale up this approach to Iarger5]

architectures.

Also, we need to stress the trade-off existing between
. . 61
the number of sensors available and the complexity of th
estimation process. More sensors allows a better estimatio
by reducing the uncertainty on the state, but also generatdd
a growing complexity resulting in the increase of the com-
putation time. Moreover, more sensors leads to more weighs;]

and less (mission) payload for the UAV.

VI. CONCLUSION AND FUTURE WORK

El

In this work, we investigate cyber-physical attacks on
UAVs and the use of a greedy strategy for dynamic state,

estimation to characterize such vulnerabilities. A sifigyi

and generic UAV architecture accounting for internal slgna

s/dataflows is introduced and used to support both attac
characterization and propagation and algorithm implemen-
tation and testing. Sensors positioning for effective exyst [12]

state estimation is considered. The algorithm guarankees t

oretical worst-case performance for various cyber-plasic[i3)
attack scenarios. Moreover, it performs as well as the brute
force strategy as demonstrated by the results of prototype
implementations and simulation on a subgraph of the UAYi4
in the case of gain control attacks. The estimation process
generates either the set of all observable states or, whéd!

applicable, the unique feasible state of the system.

As preliminary results have shown, there is a need to
go beyond the reliance on a simple taxonomy to bettdt®]
understand and tackle the complexity of the propagation
mechanisms of attacks and handle them in attack model$]
Thus, future work should look at candidate formal, UML-

based languages to capture those complex interactions g

attack models as a whole in a systematic way. There is also

a need to formulate and integrate safety requirements in t
estimation process. One illustrative issue is the ability t

e,

gain insight into the algorithm performance bounds under
time-constrained changes of actions. We believe the actUf]
support of our framework for assumptions is a way forward.
The ability to eliminate unsafe actions from the initial sef21]
can be encoded in a similar way. Finally, the number and
location of sensors in the system topology are architectu[gzl
and application-dependent. Integrating sensors placemen
studies and analysis in the system design loop will provide a
optimal solution to this problem thus, ultimately ameligra 23

the performance of the system state estimation process.
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