
Expanding Kinodynamic Optimization Solutions with Recurrent Neural
Networks and Path-tracking Control

Joshua Shaffer, and Huan Xu, Member, IEEE

Abstract— This paper explores a methodology for training
recurrent neural networks in replicating path planning solu-
tions from optimization problems. Training data is generated
from a kinodynamic rapidly-exploring random tree, from which
a recurrent neural network is trained upon to produce the
state path through fixed time-step execution. Path-tracking
controllers are formulated to follow the path generated by
the network alongside the use of local potential functions to
mitigate minor constraint violations. The control signal from
such a controller should mimic that of the optimized solution.
Preliminary results for a 2D dynamics problem with obstacle
constraints showcase the ability of this approach to achieve the
desired controller execution and resulting state path. We also
show that better network training and greater amounts of data
lead to an increase in the overall performance.

I. INTRODUCTION

Path planning for general autonomous vehicles encom-
passes a broad range of methodologies, from which re-
sulting online applications require varying degrees of ac-
curacy and computational speed for the solutions solved.
Kinodynamic problems include continuous kinematic and/or
dynamic state constraints plus environment-dependent kine-
matic constraints, such as obstacles. The introduction of
these constraint types with optimality conditions typically
increases the difficulty in producing quick and feasible
solutions [1]. As a result, the fastest path planning method-
ologies tend to ignore kinematic/dynamic state constraints
in favor of finding solutions to satisfy a varied environment
[2]. Otherwise, when kinematic/dynamic constraints must be
considered, they often are abstracted to simpler, possibly
discrete, models, from which controllers must enforce in
real-time [3]. Application performance of such methods
is greatly dependent upon how well the abstracted sys-
tem applies to the full and continuous kinematic/dynamic
model. In cases where the solution must utilize complete
kinodynamic constraints and optimality conditions in its
formulation, trajectory optimization algorithms can find a
solution at the cost of much higher computation times [3].
This greatly impacts their online applicability. Furthermore,
increases in state space size only exacerbate the issue for
all approaches [4], [1], [3]. Because of these issues related
to kinodynamic path planning with optimality conditions,
an encompassing solution that incorporates complete and
continuous kinodynamic constraints and computes as fast
as methods that reduce these constraints to simpler or non-
existent models is of great interest.

J. Shaffer and H. Xu are with the Department of Aerospace Engi-
neering, University of Maryland, College Park, MD 20740, USA. e-mail:
jshaffe9@terpmail.umd.edu, mumu@umd.edu.

Supervised machine learning, using models such as re-
current neural networks (RNN), provides a platform from
which unknown time-dependent processes can be form-fitted
through training data in which the correct input and output
sets are known. In relation to the controls community, RNNs
often find uses as controllers of complex systems, e.g. in
highly nonlinear systems [5], [6]. In some cases, the use
of learning in controllers is well defined in order to obtain
greater understanding of their effects on system stability
and convergence [7]. Typically, though, the uses of ma-
chine learning in the controls community have been focused
towards generating controls directly for state tracking or
representing a plant model, and not for providing a path
planning solution from which the control solution is built
upon. In relation to the machine learning community, control
problems explored are often formulated to avoid some of
the larger issues that affect training of neural networks,
such as large, continuous state and environment spaces with
varied and strict constraints [8]. The introduction of these
attributes to a problem scenario can often affect training
much more severely than the inclusion of nonlinear dynamics
and therefore present a significant hurdle for the machine
learning community.

For this paper, we present a methodology utilizing an
RNN to learn the solution space of a robust, computationally
slow path planner that considers kinodynamic constraints and
optimality conditions. From here, the RNN provides state
paths that follow the desired solutions for new environments,
and controllers are formulated to force the state to follow
such while satisfying local constraints. The desired result is
a control signal and state path that closely resembles the
desired solution from the slow-speed path planner while ca-
pable of real-time execution at a far greater speed. To assess
this methodology, we explore a demonstration example that
challenges the merits of this approach. This is a problem
scenario in which learning the solution space is difficult for
the RNN (e.g. high number of environmental variables per
path planning scenario alongside strict constraints [8]) and
in which the computation speed of the slow path planning
method approaches that of the RNN execution (e.g. the
generation method can nearly be used online given simpli-
fied assumptions). Evaluating our results from this problem
scenario provides a better assessment on the feasibility of
this approach with respect to its weakest components.

The rest of the paper follows as such: Section II discusses
related work to the presented solution, Section III intro-
duces the formal problem definition, Section IV formulates
the entire methodology and approach, Section V provides

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 6778

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 05,2023 at 16:18:08 UTC from IEEE Xplore. Restrictions apply.

the sample scenario tested alongside provided constraints,
Section VI examines the results of our implementation, and
Section VII concludes the paper and presents future work.

II. RELATED WORK

The use of neural networks (NN) directly in path planning
is an expansive research topic, in part due to the opposing
nature between the need for constraint satisfaction in gener-
ated paths and the difficulty in formally verifying NN outputs
[9]. With respect to training, works in this area tend to
focus on two forms of NN training, supervised learning and
reinforcement learning. Supervised learning trains on data
sets in which the correct input/output relationships are known
while reinforcement learning trains to improve the results of
sequential outputs provided by an NN that receives inputs
from a simulated environment. For this paper, we do not
address reinforcement learning and instead choose to focus
on the implementation of models trained using supervised
learning. Previous related works have explored various ap-
proaches for implementing their supervised learning models
in the path planning problems.

[10] implements their NN models to provide initial guesses
for a separate online planner. In [10], regression learning (a
form of supervised learning) is utilized to select previous
planner solutions for a robotic manipulator as initial guesses
for the optimization planner, resulting in speed-ups of up to
an order in magnitude. Here, the primary aim is to utilize
machine learning in order to speed up the planning procedure
for a complex kinodynamic problem. Unfortunately, the
optimization planner is still liable to computation hold ups
despite strong initial guesses, hampering consistent online
performance.

[11], [12], and [13] implement their NN models to provide
direct control inputs to a system in order to perform path
planning. Each of these examples utilize the models to act
as end-to-end controllers, i.e. the models receive the direct
environmental input and provide an output control that drives
the system to the next time step. These examples demonstrate
the ability of a NN to abstract a complex system and provide
controls that fulfill common kinodynamic constraints of final
configurations and obstacle avoidance, all while executing
online. Inversely, the examples either: explored a small set
of environments [11]; made use of higher level planners to
provide nearby waypoints [12]; or restricted the input to
a locally observed space in relation to the path planning
domain [13]. Each of these demonstrate the use of a NN
in addressing a specific piece of a general path planning
formulation and not the entire, general formulation.

[14] and [15] implement their RNN models to provide the
entire state path under the whole path planning environment
(e.g. desired initial and final configurations and obstacle con-
figurations for the entire domain). Both of these approaches
demonstrate the ability of an RNN to generate an entire state
path for avoiding obstacles before online use, computing
faster than common path planning algorithms. With respect
to shortcomings, [14] only generates the shortest euclidean
distance while avoiding obstacles, and [15] provides limited

Fig. 1: Methodology overview

demonstrations and did not test the ability of the RNN mod-
els to operate in a large set of new obstacle configurations.

Each of the aforementioned approaches demonstrate vary-
ing ways of implementing networks in path planning, with
the foremost advantage of decreased computation costs in
execution. Our work aims to address some of the mentioned
shortcomings of previous approaches. Unlike [11], [12], and
[13], our model is designed to generate state paths before
online execution, on top of which we execute a control
solution. This is to separate critical control policies from the
unverified results of the NN (e.g. building obstacle constraint
satisfaction into the implemented controller design.) Unlike
[15] and [11], we assess our trained NN on a large set
of unseen environments to better address its viability in
general use. Unlike [14], our RNN is trained on path planning
problems that make use of dynamic constraints. And unlike
[10], our model generates the path planning solution directly,
resulting in an essentially fixed computation cost.

In the following sections, we present relevant problem for-
mulations and methods of solving each for the three primary
components of this methodology: generating training data
composed of optimized solutions in a varied environment,
creation and training of an RNN on said data, and executing
controls over generated paths from the trained RNN. These
components are represented in Fig. 1. The result is a path
planning RNN and controller that operate far faster than the
robust, slower optimizer and provide satisfactory solutions.

III. PROBLEM FORMULATION

A. Path Planning

Our generalized path planning problem is formulated as
the optimal control problem presented in the following way:

minimize
u(t),t f

∫ t f

0
W (t,x(t),u(t))dt +L (x(0), t f ,x(t f)),

(1a)
subject to ẋ = f(x(t),u(t)), (1b)

x(0) = x0, (1c)
x(t f) = x f , (1d)
C(x(t),u(t),P)≤ 0. (1e)

Here, x(t) ∈RN is the system state, u(t) ∈RM is the con-
trol signal, and t is time. Eq. (1a) is an optimization metric
(consisting of both an integrated scalar function W and non-
integrated scalar function L) for the provided kinodynamic

6779

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 05,2023 at 16:18:08 UTC from IEEE Xplore. Restrictions apply.

system defined by Eq. (1b), in which f(x(t),u(t)) ∈RN . Eq.
(1c) and (1d) represent desired initial and final conditions on
the state, respectively, and Eq. (1e) (with C(x(t),u(t),P) ∈
RQ) contains all desired nonlinear constraints on the system
states and control signals. The vector P ∈ RO represents all
possible static variables in the constraints. A control solution
to the above optimization formulation and its corresponding
state path is represented as G(t) ∈ RN+M .

B. Network Learning

Provided a domain for the initial and final conditions,
xi,min ≤ xi ≤ xi,max and x f ,min ≤ x f ≤ x f ,max, and a constraint
domain of Pmin ≤ P ≤ Pmax, individual optimized solutions
G(t) exist as outputs to the optimization solution when using
these variables. Provided sets Xi, X f , and Pset of sample
points from these domains, a set of solutions Gset exists,
composed of the solutions to the optimization problem using
these variables.

Given Gset , an RNN must be formed and trained upon the
provided data, operating under fixed time-step tk. The RNN
is represented generally as the form,

x(tk +1) = Φ(x(tk),xi,x f ,P), (2)

where tk represents sampled time. At a given time step and
for all solutions G(t)∈Gset , the RNN output must be trained
to minimize a performance function composed of the term,

Φ(x(tk),xi,x f ,P)−Gx(tk +1), (3)

where Gx(t) is the state component of a given solution vector
G(t).

C. Path Execution

Provided a state path σ(t) : T−→RN generated by closed
loop execution of the RNN under set values of xi, x f , and P
with ‖xi−σ(0)‖≤ δ , where δ is an arbitrarily small number,
a controller ue(t,x(t),σ(tk)) must be formulated such that the
error norm ‖x(t)−σ(tk)‖ is minimized while all constraints
C(x(t),u(t),P) ≤ 0 are satisfied. Additionally, the control
signal ue should mimic that of the true control signal Gu(t),
minimizing the error between the optimized control signal
and the executed control signal.

IV. METHODOLOGY

Each individual problem discussed in the previous section
is solved and integrated with the other solutions into the
entire methodology. This overall scheme is visualized in Fig.
1, and presented in further detail here.

A. Optimal Rapidly-Exploring Random Tree and Nonlinear
Programming

We utilize optimal rapidly-exploring random trees (RRT*)
in solving individual solutions of the optimization problem
presented in Eq. (1a) - (1e) due to its ability to provide
global solutions with regards to optimality conditions (a
major advantage discussed in [3] and [16]). Specifically,
we expand upon the formulation of the kinodynamic RRT*
found in [17] through the use of pseudospectral methods.

With respect to the RRT* algorithm, the kinodynamic
formulation is built upon the typical RRT* algorithm (as
presented in [16]), with a few primary changes. Foremost, the
metric for branch creation and pruning is calculated from the
optimization formulation in Eq. (1a). Additionally, branches
themselves are calculated by solving the optimization prob-
lem consisting of Eq. (1a) - (1d), where the initial and final
state conditions are assigned from the branches and sampled
points. Each candidate branch is checked and discarded if any
constraints from Eq. (1e) are violated along the branch path.
Due to the probabilistic completeness property of RRT*,
as originally proved in [16] and reasoned upon in [17],
enough samples will result in the best branch satisfying the
desired constraints, dynamic constraints, and optimization
metric, providing the global solution to the total optimization
problem.

In the original kinodynamic RRT* algorithm presented in
[17], the individual branches were formulated as B-splines
and optimized as a nonlinear programming problem (NLP)
according to the optimization problem. For our work, we
utilize the pseudospectral method presented in [18] that
makes use of Chebyshev polynomials. This approach allows
for a broader class of resulting solutions.

To note, we employ the RRT* and NLP combined ap-
proach for two primary reasons. First, NLP solutions from
poor initial guesses can take a much greater time (orders of
magnitude difference) than those from strong initial guesses.
As a result, the incremental approach of an RRT* in finding
an initial guess then smoothing said guess (i.e., solve the
optimization scheme including Eq. (1e) using NLP and the
first RRT* solution as an initial guess) yielded faster results
than attempting to solve the optimization problem using NLP
and a random initial guess. Second, and more importantly,
the RRT* approach enables a broader range of constraint
definitions, such as generic logic constraints, due to the
binary approach towards deeming if a branch is viable or
not. To utilize such constraints, though, the smoothing pro-
cedures cannot occur (since all constraints must be formed
as inequalities), and the RRT* must operate on a much larger
number of sample points. This is a consideration for future
work.

B. Recurrent neural network

RNNs, specifically of the Jordan network form, are feed-
forward neural networks in which the output vector of the net
serves as part of the input vector. This structure serves well
to predicting state paths since a state at tk is part of the input
used in providing the next state output at tk+1. Layers of these
networks function similarly to the usual structure present in
feedforward networks. Specifically, an input vector to a layer
is multiplied by a matrix of weights and then added to a bias
term, from which an activation function σh(·) is applied to
the result, producing an output vector. This output vector
serves as the input to the next layer in the network, if one
exists.

For the purposes of this paper, we represent the RNN

6780

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 05,2023 at 16:18:08 UTC from IEEE Xplore. Restrictions apply.

function Φ
(
x(tk),xi,x f ,P

)
as the form,

x(tk +1) =Woσh(Whx(tk)+WiI+Bh)+Bo, (4)

where Wo ∈ RN×HL, Wh ∈ RHL×N , and Wi ∈ RHL×(N+N+P)

are weighting matrices, Bo ∈ RHL and Bh ∈ RN are bias
vectors, and I ∈ RN+N+P is the input vector composed of
the optimization problem’s chosen xi, x f , and P values.
The value HL represents the size of the hidden layer. The
function,

σh(x) =
ex− e−x

ex + e−x , (5)

σh is the chosen activation function of the neurons (standard
hyperbolic tangent sigmoid operator), operating over each
element of the input vector. This structure is a 2-layer
network, in which the output layer utilizes a linear activation
function (no operations act on the output vector).

Training the network per sampled points of each solution
G(t) found through the RRT* is performed by minimizing
the standard mean square error performance function,

MSE =
1
Nt

k=Nt

∑
k=0

∥∥Φ(x(tk),xi,x f ,P)−Gx(tk +1)
∥∥2

. (6)

The actual mechanics of training any type of network is a
field that extends far beyond conventional back-propagation
techniques, and various methods exist to increase overall
performance on training data. For the purposes of this paper,
we utilize standard software packages in MATLAB that
utilize the Levenberg-Marquardt learning scheme.

C. Path Feedback and Potential Controller

Design of a controller to track the generated path σ(t) of
the RNN is a problem-specific task tied to the dynamics of
the prescribed system. The ability to track an arbitrary path
provided a system and control definition is dependent upon
the controllability of the system and realizability of a ref-
erence track [19]. Fortunately, the generated path, assuming
minimal errors produced by the RNN, is already derived from
a system using kinodynamic constraints, with considerations
to controllability enforced in the optimization. Under such,
a control signal must exist that can track the system path
accurately.

For this paper, we observe systems in which feedback
control loops are more than adequate for following the
produced RNN state history. For a simple mechanical system
(as explored in the Implementation section), the velocity
feedback portion of the control signal constitutes the error in
desired velocity of the state with that of the RNN path, and
the position feedback portion constitutes the error between
the current state position and the desired position of the RNN
path. This control signal is formulated as,

u f , f (x(t),σ(tk)) =−Kp(xp(t)−σp(tk))−Kv(xv(t)−σv(tk)),
(7)

where t is continuous time, tk is sampled time per the RNN
time interval, xp is the position vector of the state, σp is the
position vector of the RNN output path, xv is the velocity
vector of the state, σv is the velocity vector of the RNN

output path, Kp is the position gain matrix, and Kv is the
velocity gain matrix.

While the above controller design can maintain path track-
ing, no guarantees are provided with respect to constraint
satisfaction if the RNN output path fails such. In order to
combat this issue for real-time execution, localized potential
functions are used about the current position state, derived
from [20].

Provided local bounds xp,min,local and xp,max,local on the
system position state at any given time, potential functions
of the form,

U(xp(t),xp,s) =

{ −c
Ns‖xp(t)−xp,s‖ Eq. (1e) 6≤ 0

0 otherwise
(8)

are placed at uniform sample points xp,s of resolution r <(
xp,max,local−xp,min,local

)
about xp(t). In Eq. (8), Ns is a

factor to mitigate the scaling issue when using multiple
sample points, and c is a gain used for the controller. The
condition of Eq. (1e) 6≤ 0 utilizes xp,s instead of xp. The
derivative of the repulsive potential functions results in the
combined forces shown as,

F =
Ns

∑
s

−c(xp(t)−xp,s)

Ns
∥∥xp(t)−xp,s

∥∥2 . (9)

The purpose of these potential functions is to provide local
constraint satisfaction, not global satisfaction. As a result,
egregious errors in the RNN path are not mitigated by the
use of these functions. They simply serve as a means of
maintaining constraint violations on position in real-time
and in a manner that could be employed locally on-board
a robotic platform.

As a result of the feedback controller and potential func-
tion forces, the executed controller results in the form,

ue = F(tk)+u f , f (x(t),σ(tk)), (10)

where the term F(tk) is calculated by Eq. (9) at each sampled
time tk

V. IMPLEMENTATION

While this methodology is applicable to problems with
far more complex dynamic constraints, a 2D, point-to-
point problem with obstacle avoidance and linear dynamic
constraints is explored to investigate the feasibility of the
proposed methodology. The strict constraint of obstacle
avoidance and the desired optimization of the state path and
control over the entire execution horizon constitute challeng-
ing aspects of this problem. In addition to these constraint
types creating a difficult problem for an RNN to learn,
the number of obstacle constraints, which contribute large
domains and vector sizes to the environmental input variables
xi, x f , and P (from Eq. (2)), also present a significant hurdle
in the ability of the RNN to generalize learned solutions
to entirely new scenarios. Each of these aspects make this
apparently simple problem deceptively challenging for an
RNN to learn.

The dynamic model utilized for this problem is,

6781

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 05,2023 at 16:18:08 UTC from IEEE Xplore. Restrictions apply.

ẋ = v (11)

v̇ = uem, (12)

where m= 1. The state boundary is (−6,−8)≤ (x,y)≤ (6,8)
and (−2.5,−2.5) ≤ (vx,vy) ≤ (2.5,2.5), with control con-
straints of (−10,−10)≤ (ux,uy)≤ (10,10). The environment
consists of 7 rectangular obstacles randomly placed within
the state domain, each formulated as,

(−6,−8,0.5,0.5)≤ Pi = (xp,yp,hp,wp)≤ (6,8,5,5), (13)

where xp and yp are position coordinates of the rectangle’s
center and hp and wp are heights and widths, respectively.
Initial and final state positions (with zero velocity) are
sampled randomly within the state domain and outside of
obstacles. The optimization function to minimize for a path
is, ∫ t f

0
‖ue‖dt− t f . (14)

Approximately 5,000 solutions were generated for train-
ing, consisting of 10 final positions per 10 initial positions
per 50 random object sets. The solver SNOPT [21] was
utilized for solving each branch of the kinodynamic RRT*
and performing the smoothing procedure for each solution.
MATLAB’s neural network toolbox was utilized for training
the RNN (using 20 neurons in the hidden layer, i.e. HL= 20)
over the generated data set, sampling at 0.1 seconds (i.e. t1 =
0.1, t2 = 0.2...). Additionally, the RNN closed-loop execution
and state response of the aforementioned controller with
gains c= 25, Kp = 10, and Kv = 15 were tested in MATLAB.
Results were also generated using just the obstacle avoidance
and goal-attracted potential controller from [20] for compar-
ison against the training data solutions and the RNN plus
controller solutions. This provides a straightforward, baseline
comparison of the methodology solution with a simpler
approach. Last, timing comparisons were made between a
sped-up version of the solution generation method (RRT*
without any NLP optimization) and RNN executions over
the longest time frame. This was performed to assess how
much faster the RNN approach can execute compared to the
original solution generation method.

VI. RESULTS

Three types of comparisons from the methodology’s pro-
cesses are useful in assessing how well the final con-
troller outcome can perform against the optimized training
data. First, we examine how well the RNN’s state output
Φ(x(tk),xi,x f ,P) matches that of the state values Gx(tk +1)
from all training data points. This approach showcases how
well the RNN can mimic desired outputs strictly on the
training data, and is referred to as the open-loop (OL)
performance of the path generation. Second, we examine the
RNN’s ability to generate accurate paths when utilizing only
initial condition states from each training solution set, Gx(1).
Specifically, for each solution Gx, the initial state is fed into
the RNN, from which the RNN’s output state x(tk + 1) is
recursively fed back into the RNN’s input to generate a path.

This approach and its comparison to the solution sets show-
cases how well the RNN can generate the desired state path
provided only the environmental inputs and initial condition,
the form in which use of the RNN for path planning would
actually be implemented. We label this comparison as the
closed-loop (CL) performance of the RNN. Last, we assess
the controller’s performance in following the state path as a
reference. Specifically, provided a CL path generated by the
RNN, how well does the controller (starting with the same
initial state) maintain path-tracking through the entire path.
The resulting state path from the controller is again compared
to the solution sets, alongside a comparison of the control
signals and resulting optimization function. This approach is
referred to as the controlled (CTRL) scenario and represents
the desired final outcome of this methodology, since this is
what would execute in real-time.

Due to the amount of data explored, we selected a
few solution sets for discussion in order to showcase the
performance of the CL and CTRL outcomes. Plots of the
position paths and control histories are provided for the three
samples in Fig. 2 and Fig. 3 respectively, showcasing ideal
results, adequate results, and poor results. In the x-y plots,
we also included the results of utilizing just the obstacle-
avoidance potential controller from [20]. This was to provide
comparison against a straightforward solution method, one
that executes online like the RNN approach but was not
formulated with respect to path optimization.

In the ideal performance case, the CL state output path
follows closely that of the training path over the execution
duration of the training path. Furthermore, the resulting
CTRL control signal trends that of the optimized path as
long as the RNN output matches the training data well.
The potential controller result nearly matches that of the
training path, though, showcasing how the simpler solution
can better serve in trivial cases. In the adequate case, similar
trends follow, except the CL output path traces the other
side of the obstacle before reaching the final point, resulting
in larger deviations from the desired control signal in the
CTRL case. Again, the potential controller better tracks
the training path, but modifications had to be made to
the potential radius in order to avoid adding the effect of
the near-miss obstacle. This highlights that while again the
simple solution could provide a better result, its formulation
required modification to handle this obstacle placement. Last,
in the poor case, the CL output path does not closely match
that of the desired path, but the CTRL path compensates
for the RNN’s constraint violations while still ending in
the vicinity of the desired final location. This satisfaction
of the state constraints results in excessive CTRL control
spikes, unfortunately, for scenarios in which the RNN greatly
violates state constraints. The final outcome of the potential
controller resulted in unintended path oscillation due to the
obstacle placement. This highlights that further modifications
to the potential function design would need to be made in
order to better track the desired training path, a common
issue found with potential controllers executing in cluttered
environments [20].

6782

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 05,2023 at 16:18:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Ideal (left), adequate (middle), and poor (right) performance performance x-y plots, including solution sets, CL outputs, CTRL
outputs, and potential controller comparisons.

Fig. 3: Ideal (left), adequate (middle), and poor (right) performance control plots, including solution sets and CTRL outputs.

TABLE I: Open-loop (OL), closed-loop (CL), and controller
executed (CTRL) RMSE values for 3 training scenarios

Comparison vector WF WS PF
OL Position (m) 3.52e-5 7.84e-5 0.065

OL Velocity (m/s) 0.012 0.011 0.050
CL Position (m) 2.89 5.18 13.07

CL Velocity (m/s) 0.79 2.90 4.70
CTRL Position (m) 6.43 8.54 8.94

CTRL Velocity (m/s) 2.92 3.35 3.60
CTRL Control Signal (N) 17.9 66.29 39.08

CTRL Optimization Function (N-m) 54.2 291.29 137.48

Beyond visual representations, a useful metric to examine
across the entire data set is the root mean square error
(RMSE) of the state for each comparison approach. This
provides a rough understanding of how well each method
performs in relation to the training data. Due to the limited
data set, though, we provide further comparisons of the
OL, CL, and CTRL approaches between three different
training scenarios in order to highlight how much training
improvements can positively impact the desired results. The
three training scenarios consist of a “well-trained” network
over the full data set (WF), a “well-trained” network over a
subset (1000 solutions) of the data set (WS), and a “poorly-
trained” network over the full data set (PF).

From the RMSE values, the training performance in OL
outperforms that of CL, which outperforms that of CTRL.
More plainly, the open-loop performance of the RNN im-
pacts how well the closed-loop execution performs, which

directly affects the controller’s ability to match the desired
training data results. As observed in the differences between
the WF and PF results, greater training performance on the
same amount of data resulted in lower RMSE values across
all types of comparisons. Additionally, greater amounts of
training data also results in lower RMSE values, observed in
the differences between the WF and WS results.

It is clear from these results that the RNN closed-loop’s
ability to match that of the solution set is critical to the
success of this methodology and reproduction of desired
control signals during controller execution over the path.
Fortunately, in the cases of state constraint violations in the
path generated by the RNN (observed in the poor case of Fig
2), the executed controller’s localized potential functions can
advert such violations and still maintain the ability to track
the RNN output path towards the final state, a desired result
of this methodology. Otherwise, in the ideal performance
results of Fig. 2 and Fig. 3, when the RNN closed-loop
performs well, the state path of the controller and control
signal match the desired solution set from the RRT*, the
primary desired result of this methodology.

With regards to computation speed, the execution of the
controller is limited solely by the speed of the RNN in
generating the execution path, or specifically the proceeding
state to follow at each time step. In the case of this example,
this is comprised of 2 matrix multiplications, 2 vector
additions, and the application of the activation function in

6783

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 05,2023 at 16:18:08 UTC from IEEE Xplore. Restrictions apply.

the hidden layer. These processes are orders of magnitude
faster than the RRT*’s ability to generate a solution in an
arbitrary environment. To demonstrate this, executions of the
RNN over a 200 time step horizon were performed along
with executions of a sped-up version of the RRT* (utilizing
no NLP optimization but resulting in suboptimal solutions)
sampling 1000 nodes. Both of these tests were performed
100 times to find the average execution times on a 2.5 GHz
Macbook Pro. The average execution time of the RRT* was
approximately 1.7 seconds, and the average execution time of
the RNN was approximately 0.055 seconds. This illustrates
that in this scenario, even the suboptimal execution of the
RRT* required just over an order of magnitude more time
to execute than the RNN over the entire time horizon of the
problem.

VII. CONCLUSIONS AND FUTURE WORK

This paper formulates and explores a methodology for
training an RNN over optimized solutions generated by a
kinodynamic RRT* in order to create state paths in real-
time that a path-tracking controller can follow, producing
near-optimized solutions for new environments. A small data
set for a 2D problem, formulated to challenge the merits of
this approach, were used to explore promising preliminary
results. We furthermore show that with greater training and
larger amounts of training data, better performance in the
executed controller (the primary goal of this methodology)
can be achieved for real-time implementation, which would
execute much faster than the generation method for this
straightforward example.

Future work involves multiple avenues. First, larger data
sets and greater exploration of training schemes are desired
to improve the results for this problem. The inclusion of
strict obstacle constraints and large variations in the static
environments creates a difficult problem for machine learning
to solve, and these results highlight the need for more robust
training if an RNN is to generate strong solutions across all
possible environments. Second, various environment encod-
ings for the neural network, discussed in [22] and used in
[14], can help improve training performance across the board
and more robustly represent the environment in training the
RNN and for generating the paths. Last, additional complex
scenarios should be explored to better assess an RNN’s
ability to recreate optimized solutions for different dynam-
ics, constraints, optimization metrics, and state space sizes.
Additionally, this opens further research into the types of
path-tracking controllers that will better recreate the desired
control signals from the optimized solutions.

REFERENCES

[1] F. Kamil and K. W Zulkifli N, “A review on motion planning and
obstacle avoidance approaches in dynamic environments,” Advances
in Robotics & Automation, vol. 04, 01 2015.

[2] A. Valero-Gomez, J. V. Gomez, S. Garrido, and L. Moreno, “The path
to efficiency: Fast marching method for safer, more efficient mobile
robot trajectories,” IEEE Robotics Automation Magazine, vol. 20,
no. 4, pp. 111–120, Dec 2013.

[3] D. Youakim and P. Ridao, “Motion planning survey for autonomous
mobile manipulators underwater manipulator case study,” Robotics and
Autonomous Systems, vol. 107, pp. 20 – 44, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889018300368

[4] M. Mohanan and A. Salgoankar, “A survey of robotic motion
planning in dynamic environments,” Robotics and Autonomous
Systems, vol. 100, pp. 171 – 185, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889017300313

[5] M. B. Nasr and M. Chtourou, “Neural network control of
nonlinear dynamic systems using hybrid algorithm,” Applied Soft
Computing, vol. 24, pp. 423 – 431, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494614003640

[6] S. L. Brunton and B. R. Noack, “Closed-loop turbulence control:
Progress and challenges,” Applied Mechanics Reviews, vol. 67, no. 5,
p. 050801, Aug. 2015.

[7] H. Singh and N. Sukavanam, “Simulation and stability analysis of
neural network based control scheme for switched linear systems,” ISA
Transactions, vol. 51, no. 1, pp. 105 – 110, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0019057811001005

[8] G. Dulac-Arnold, D. J. Mankowitz, and T. Hester, “Challenges
of real-world reinforcement learning,” CoRR, vol. abs/1904.12901,
2019. [Online]. Available: http://arxiv.org/abs/1904.12901

[9] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in Computer Aided Verification, R. Majum-
dar and V. Kunčak, Eds. Cham: Springer International Publishing,
2017, pp. 3–29.

[10] N. Jetchev and M. Toussaint, “Fast motion planning from experience:
Trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, no. 1, pp. 111–127, Jan 2013. [Online].
Available: https://doi.org/10.1007/s10514-012-9315-y

[11] Y. Fu, D. Jha, Z. Zhang, Z. Yuan, and A. Ray, “Neural network-
based learning from demonstration of an autonomous ground robot,”
Machines, vol. 7, p. 24, 04 2019.

[12] W. Gao, D. Hsu, W. S. Lee, S. Shen, and K. Subramanian,
“Intention-net: Integrating planning and deep learning for goal-
directed autonomous navigation,” CoRR, vol. abs/1710.05627, 2017.
[Online]. Available: http://arxiv.org/abs/1710.05627

[13] M. Al-Sagban and R. Dhaouadi, “Neural-based navigation of a
differential-drive mobile robot,” in 2012 12th International Conference
on Control Automation Robotics Vision (ICARCV), Dec 2012, pp.
353–358.

[14] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” 2019 International Conference on Robotics and
Automation (ICRA), pp. 2118–2124, 2018.

[15] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural path
planning: Fixed time, near-optimal path generation via oracle
imitation,” CoRR, vol. abs/1904.11102, 2019. [Online]. Available:
http://arxiv.org/abs/1904.11102

[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, 2011. [Online]. Available:
https://doi.org/10.1177/0278364911406761

[17] S. Stoneman and R. Lampariello, “Embedding nonlinear optimization
in RRT* for optimal kinodynamic planning,” in 53rd IEEE Conference
on Decision and Control, Dec 2014, pp. 3737–3744.

[18] D. R. Herber, “Basic implementation of multiple-interval pseudospec-
tral methods to solve optimal control problems,” UIUC-ESDL-2015-
01, Tech. Rep., June 2015.

[19] J. Löber, “Optimal trajectory tracking,” arXiv e-prints, p.
arXiv:1601.03249, Dec 2015.

[20] G. Fedele, L. D’Alfonso, F. Chiaravalloti, and G. D’Aquila,
“Obstacles avoidance based on switching potential functions,” Journal
of Intelligent & Robotic Systems, vol. 90, no. 3, pp. 387–405, Jun
2018. [Online]. Available: https://doi.org/10.1007/s10846-017-0687-2

[21] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An
SQP algorithm for large-scale constrained optimization,” SIAM
Rev., vol. 47, no. 1, pp. 99–131, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1137/S0036144504446096

[22] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in ICML,
2011.

6784

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 05,2023 at 16:18:08 UTC from IEEE Xplore. Restrictions apply.

