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Abstract—As unmanned autonomous vehicles (UAVs) are being
widely utilized in military and civil applications, concerns about
mission safety and how to integrate different phases of mission
design are growing significantly. One important barrier to a
cost-effective and timely safety certification process for UAVs
is the lack of a systematic approach for bridging the gap
between understanding high-level commander/pilot intent and
implementation of intent through low-level UAV behaviors. In
this paper we demonstrate an entire systems design process for
a representative UAV mission, beginning from an operational
concept and requirements and ending with a simulation frame-
work for segments of the mission design, such as path planning
and decision making in collision avoidance.

I. INTRODUCTION

Unmanned autonomous vehicles (UAVs) are becoming in-
creasingly utilized in military and civilian application due
to their potential to provide improved capabilities while in-
creasing manpower efficiency [1]. Current and future domestic
applications for UAVs include search and rescue, weather fore-
casting, law enforcement, border patrol, firefighting, disaster
response, precision farming, commercial fisheries, scientific
research, aerial photography, mail delivery, infrastructure mon-
itoring and emergency management [2]. As a result of the
prevalence of UAVs, particularly in civilian applications, there
are growing concerns with regard to the safe integration of
UAVs into the national airspace. The safety and reliability of
UAVs are highly reliant on their capability to avoid emergency
situations in order to have a safe flight. However, the lack of
a systematic approach for mission validation and verification
can lead to mission failure as current methods cannot properly
integrate high-level controls with low-level commands. Using
a systematic approach for solving high-level problems and
tracing them into the lower level problems can reduce the risk
of failure and catastrophe [3].

The goal of this paper is to demonstrate an entire system
design process for a representative UAV mission. Beginning
from an operational concept and requirements and ending with
verification through simulation, we demonstrate how model-
based systems engineering tools can be used to capture high-
level design coupled with low-level constraints.
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A. Model-Based Systems Engineering

Systems engineering is an interdisciplinary approach used
in various projects to enable the realization of a successful
system and reduce the risk of encountering problems dur-
ing system operation. A systems engineering approach to a
project includes analyzing and deriving stakeholders’ needs,
documenting requirements and continuing with system design
while considering the complete problem and validating the
system to ensure it can satisfy stakeholders’ needs in an effi-
cient, cost-effective and high quality manner. A model-based
system engineering methodology uses formalized applications
of modeling to achieve this [4]. In this methodology, system
requirements, structure and behavior can be visualized in the
conceptual phase of system development as well as later in the
life cycle. This method can help systems engineers to provide
different representations of a system from the standpoint
of corresponding concerns and issues of a system [5]. To
clarify the importance of systems engineering applications in
our problem, we demonstrate the complexity of the mission
design and challenges that designers may encounter in mission
planning and how they can leverage systems engineering
approaches for planning a safe mission.

In mission and scenario planning, clients have specific
requirements for accomplishing their mission, and as a re-
sult, various users such as Air Traffic Control and ground
controllers, may interact with the flight mission. In addition,
conceptual operations in different flight states and UAV be-
haviors and structure can play important roles in organizing
the mission. In developing a mission plan for a UAV, one
should address different design challenges such things as
platform route, sensor modeling, communication, navigation,
threat analysis and 4D visualization. Integrating all these
requirements, verifying the entire complex system, as well as
reducing failure risk and improving mission safety requires a
systematic approach to mission planning. This approach allows
us to capture this complex system and detect possible faults
and malfunctions in each phase of the system. All of this leads
us to conclude model-based systems engineering is a good
solution for modeling all required states of our UAV flight.

In this paper we utilize a model-based systems engineer-
ing approach to capture the requirements, provide a high-



level solution to our mission planning problem, and map the
generated models into the mathematical models. In Section
II, we formulate our problem and demonstrate the mission
requirements and operational concepts. Section III discusses
system architecture as well as functional and behavioral anal-
ysis. In Section IV, we implement our architectural design
in simulation and evaluate and validate the results with the
mission requirements. Finally, we conclude and address future
work in Section V.

II. PROBLEM FORMULATION

Based on our stakeholder’s (Millennium Engineering and
Integration Company) requirments, we were assigned to de-
sign and implement a “Situational Awareness and Response
Guidance Module”(SARGM) for use onboard Unmanned Air
Vehicles (UAVs). The SARGM shall incorporate the following
functions: (1) execute a prelaunch-uploaded mission plan, (2)
identify anomalies (including UAV flight-rule violations, mid-
air collisions, component failures and loss of communication
link events) and (3) respond to such anomalies by generat-
ing revisions to the baseline mission plan in a manner that
minimizes hazards to human life and property. The SARGM
shall incorporate the Collision Avoidance algorithms that we
are trying to develop.

A. concept description

Safe operation of Unmanned Air Vehicles (UAVs) operated
by commercial and military entities in the National Air Space
(NAS) is envisioned to require autonomous situational aware-
ness and safe response to situations and anomalies that may
constitute hazards to human life and property. The hazardous
situations and anomalies may result from loss-of-command-
link, violation of flight rules, departure from flight plan, UAV
component failures, failure to respond to AT directives, and the
need to sense and avoid nearby air traffic. Therefore, software
algorithms onboard the UAV must detect and identify them.
In addition, other onboard software algorithms must decide
the “safe response” to each identified situation or anomaly,
wherein determining such responses requires knowledge of
map position, obstacle and terrain features. The onboard “’safe
response” software must incorporate decision support to either
terminate the UAV flight or alter the UAV’s onboard flight plan
in accordance with the selected response.

Safety certification remains a challenge for UAVs because
of the gap between understanding commander/pilot intent and
implementation of intent through low-level UAV behaviors [6].
A lack of appropriate systematic methods prevents high-level
autonomous systems from being widely fielded. Therefore,
new techniques for standardized and formalized requirements
specification and mission planning of UAVs are needed that
take into account discrete decision-making and can be in-
tegrated with flight simulation software in order to verify
the overall system. For this purpose we explain the mission
overview and some of its high-level and low-level mission
requirements in order to bridge the gap between functions and

operational concepts of the UAV using model-based systems
engineering.

B. Project Objective

In this project we tried to design and implement a ”‘Situa-
tional Awareness and Response Guidance Module”’ (SARGM)
for use onboard Unmanned Air Vehicles (UAVs). The SARGM
shall incorporate the following functions:

1) Execute a prelaunch-uploaded mission plan

2) Identify anomalies (including UAV flight-rule viola-
tions, midair collisions, component failures and loss-of-
command-link events)

3) Response to such anomalies by generating revisions to
the baseline mission plan in a manner that minimizes
hazards to human life and property

In conclusion, the purpose of the proposed research is to create
a Preliminary Design of an Autonomous Intelligent Flight
Management System for UAVs that incorporates autonomous
situational awareness and safe response to situations and
anomalies that may constitute hazards to human life and

property.
C. Mission Overview

In order to determine the operational and functional re-
quirements, it is essential to define representative mission and
flight plan scenarios in order to identify, clarify and analyze
users’ requirements. These are focused on a variety of tasking
scenarios characterized by FAA class airspaces A-G [7]. For
this paper, we chose a loitering scenario and captured both
high-level and low-level mission requirements related to this
phase of flight. Table I shows the main goals of the mission,
which are as follows:

1) Autonomous Flight: Achieve controlled take off, flight,

loitering and landing.

2) Cover Entire Search Area: Determine target location
within defined distance (50ft), fly the search area.

3) Obstacle Detection and Avoidance: Carry out Air Traffic
Control (ATC) requirement to remain well clear of other
traffics.

While this surveillance application is highly in demand due to
its potential to be used in civil applications such as disaster
response, firefighting, search and rescue [8], the approach used
in this paper can also extend to the rest of the flight phase as
well as to other scenarios.

D. Operational Concepts

After creating the main goals and mission scenarios, the
next step is to provide use case diagrams for our system of
interest, the UAV’s mission planner, to capture the system
and sub-system’s behavior. Use-case diagrams are developed
using the main goals of a system and show what the users
want the system to do. Systems engineers can derive system
requirements from them and their flows of actions [9]. Thus,
we developed two use-case diagrams for the purpose of this
example. One is a high-level system’s use case diagram in
which we show the overall tasks of mission planner in the



TABLE I

MISSION OVERVIEW

Mission High-Level Requirements Low-Level Requirements

Overview

1 UAV shall approach the || UAV shall take images
pre-planned maneuver || from loitering location
point

2 UAV shall fly at 5000ft || UAV shall pass specific
altitude waypoints during loitering

3 UAV shall loiter for 1 hour || UAV shall Determine tar-

get location within defined
distance (50ft)

4 UAV shall resume the UAV shall detect all in-
flight path along the bor- || truders within 100ft in loi-
der tering phase

5 UAV shall climb back af- || UAV shall avoid up to 3
ter 1 hour loiter intruders at the same time

sequence of actions that the user might interact with. The
second is an obstacle avoidance use-case which is a lower
level use-case diagram for our mission. We go through the
details of each diagram in the following paragraphs.
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Fig. 1. High-Level Use Case Diagram for Overall Loitering Scenario

Figure 1 depicts all the states of the mission planner. These
are (1) path planning, (2) trajectory following, (3) sensing, and
(4) decision making for emergency situations. In Figure 1, the
users of the mission are demonstrated. One type of user is the
UAV communication systems, which allows the system to send
and receive data from sensors and ground controls. Another
type is the ground controller, who monitor, manage and track
the mission and are ready to act in emergency situations.
Ground controllers also have permission to cancel or change
the mission on board if it is necessary.

To accomplish the mission, the UAV must be safe from any
plausible threat. Therefore, the UAV should have a reliable

collision avoidance system for all mission states, including
the loitering scenario we focus on. This leads us to create a
sub use case diagram that effectively shows the actions of the
collision avoidance system and how it interacts with actors.
Figure 2 is our sub-level use case diagram for the case in
which the UAV should avoid obstacles.
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Fig. 2. Use Case Diagram for Collision Detection and Avoidance Scenario

As shown in Figure 2, while the UAV is loitering and
following its trajectory, it should also sense and detect threats
and use an appropriate maneuver to avoid collisions. However,
based on the type of threats, the detection and avoidance
aspects need to meet different sets of requirements. To simplify
this, our simulation only looked at the set of requirements for

Ground Controllery non-cooperative intruder, which is explained in the following

paragraph. The simulation will be discussed in more detail in
the software module section.

It should be noted that there are two types of intruders,
known as cooperative intruders and non-cooperative intruders.
The difference between these two types is that in the coopera-
tive scenario, the UAV can cooperate with the intruder (another
aircraft or UAV) and they can work together to avoid collision.
On the other hand, non-cooperative intruders encompass birds,
balloons, and other intruders that cannot communicate with
our UAV. As a result, the UAV must avoid them entirely by
itself. This paper focuses on the non-cooperative scenario to
simulate the results and develop the algorithm.

ITIT. ARCHITECTURAL DESIGN

In order to capture functional aspects of the system, we
demonstrate and emphasize the system architecture, including
system behavior and structure in detail. In this section we
discuss the necessary specifications the system should have in
order to meet the users’ requirements. To begin, we explain
the desired inputs and outputs. Then we will walk through
the system’s functional (operational) requirements to achieve
those outputs.

A. Functional Concepts

In our use case diagrams, there are two important com-
ponents for mission planning, one being path planning and



trajectory following, and the other having the capability to
avoid potential collisions. In order to combine these two
components and demonstrate how they can be related to each
other, we present the following functional diagram (Figure 3).

Figure 3 is a context diagram that shows how the system
interacts with the environment, their interfaces, and the flow
of information. We consider documented requirements and a
UAV model as inputs for the mission planner system [N.B.
In this paper, we do not consider the problem of modeling
the UAV dynamics, instead we use it as an input and a con-
straint for UAV mission planning]. Additionally, the simulation
software can simulate the functionality of the system. Then
the hardware codes can be developed in order to provide
4D visualization of the mission and integrate them into UAV
system.

Provide Input Run Simulation

- 5 | — - = =

: UAV 6 Degree of Freedom Model > : Simulation Software
| | | KO
| Implement Coqu
— a |
Display Output | |

1
: Mission Planner System

‘ Path Planning

Collision Detection

vl

: Hardware |

develop the system’s behaviors and functions. For this purpose,
activity diagrams are helpful to visualize the steps, actions,
and the parts of the systems that carry out the actions. In
the collision detection and avoidance segments, the sequence
and flow of actions are important for managing requirements
and consistency between design and requirements. We provide
the reader with some sections of the activity and sequence
diagrams related to the non-cooperative collision detection and
avoidance.

Figure 4 describes the collision detection system, which
highly relies on the history of the tracked obstacle to estimate
the future trajectory. It shows that the detection section shall
predict the point of collision and the time to reach that point
in order to provide sufficient information for the collision
avoidance section to avoid threats. This prediction is based
on time-based information about the history of the obstacle’s
trajectory and velocity. Sensor systems will ensure the whole
system about the possibility of getting this kind of information.
If there is sufficient time-based information, the system will
estimate the future trajectory of the obstacle. Then it can
predict the closest approaching point for UAV and obstacle.
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w

Fig. 3. System Context Diagram showing interactions between system and
environment

In Figure 3, the functions of each step and how they connect
with each other is derived. In this figure, the interoperability
of the path planning, sensing and collision detection and
avoidance subsystems can be seen. All the information about
UAV model is used as input for the path planning and
waypoint generation phase. For collision avoidance, the UAV
needs to acquire information about unpredictable obstacles and
turbulences from sensors, and use that to predict if there is a
risk of an upcoming collision. Then, based on the prediction,
it needs to avoid the threat and re-plan the trajectory within
a specified time interval. Sometimes sensor data sent to the
control station necessitates changes in the scenario planning,
which must set updated to the system. In this case, reliability
and safety of the sensor are the key parameters for a successful
mission. However, in this paper we do not address the sensor
parameters and functionality. Instead, we assume that the
sensor is capable of sensing and sending all required data for
the path planning, collision detection and collision avoidance,
and developing sensor models will be the subject of the future
work.

B. Behavioral analysis

In the previous sections, we considered the users’ require-
ments and how it should interface with the system. Next, we
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Fig. 4. Activity Diagram for collision avoidance showing flows of activities

In Figure 5, the collision avoidance activity, which occurs
after detection, is shown. In particular, it shows the steps of
determining the best avoidance maneuver and how it applies
the maneuver to avoid the obstacle, as well as necessity of
re-planning and waypoint generation for some small time
intervals to avoid the obstacles. The declaration system uses
detection information about distance and time to closest ap-
proaching point to evaluate if the UAV can avoid the obstacles
or not. After this evaluation, system can provide a no-flight
area for the UAV by considering other obstacles and select the
most appropriate maneuvers for avoiding. In the next section,
we demonstrate how collision avoidance algorithm that we use
can determine these maneuvers.
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Fig. 6. System Sequence Diagram- Sequence of actions between sub-systems

In Figure 6, the sequence of actions for non-cooperative
collision avoidance is shown. This figure helps us to determine
the procedure of the collision avoidance and the priority of
different steps. Sensors receive information about the location
of obstacles and send that information to the data fusion block
for processing. Then, if the information if sufficient, the system
tracks the data and estimates the future trajectory. Afterwards,
the predicted trajectory is used for determining collision time
and collision point. The next step is to provide a no-flight area
for UAV and modify its trajectory for some amounts of time.
Then, the new waypoints are generated by autopilot and UAV
can execute appropriate avoidance maneuver.

C. Structural Analysis

Having explained functionality and behavior, we now
demonstrate the system’s structure by using a block definition
diagram. A block definition diagram is useful for showing the
system’s module and can be used in software development and
simulation of the system. Block definition diagrams can accept

values, parts, operations and attributes, which allow it to be
easily converted to code. In this paper we focus on the pro-
cedure and provide the reader with an example of simulation
results that are extracted from the block definition diagram.
This is shown in Figure 7, which depicts the functionality of
the entire system.

As discussed earlier, one of the first steps in mission
planning is generating trajectories. Other parts of the system
are sensing, collision detection and collision avoidance sub-
systems needed for mission safety. All parts have their own
operations and values. For example, in collision detection,
the system shall predict the obstacle’s trajectory in the near
future and detect if there will be a collision based on the
speed and trajectory of the UAV. The collision avoidance
part shall make the decision on how to avoid the potential
collision by changing speed, turning radius and altitude. Figure
7 shows each of these parts in mission planning. In each
block, constraints demonstrate the method and formula for
developing codes for each block
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Fig. 7. System Block Definition Diagram that shows four modules of the
system. These modules are: (1) path planning, (2) collision detection, (3)
sensing, and (4) collision avoidance.

IV. SOFTWARE MODULE

To integrate a complex system consisting of different sub-
systems, simulations are used to analyze the system’s behavior
and verify its correctness. The simulation system is derived
from the system’s model and tries to capture all aspects of the
system’s model. However, in the real world, the entire system
cannot be simulated as there are always many constraints for
simulating all parts of the system. Therefore, it is important to
clarify what the goals of the simulation system are and what
parts of the system are going to be simulated. As it is shown
in Figure 3, simulation software is developed from the mission
planner model to simulate different segments of the mission
planner model. In the previous sections, we provided a semi-
formal model for a mission planner system and in this section,
we provide simulation systems for path planning and collision
avoidance parts of our developed model.



A. Simulation Module Structure

In order to show the flow of the data and the structure
of the simulation, we develop the simulation internal block
diagram which shows the interaction between parts of the
simulation software and how data is transferred between them.
Figure 8 shows the internal structure of our simulation system.
The simulation parts are as followed: (1) Mission Planner
User Interface, (2) Mission Planner, (3) Mission Manager,
(4) Mission Recovery, (5) Mission Planner Display Engine.
Mission Planner User Interface and Mission Planner Display
Engine are related to the users’ inputs, outputs and the
simulation results. The Mission Planner determines the UAV’s
trajectories, waypoints and search area. The Mission Manager
is responsible for determining possible collisions and calcu-
lating collision parameters such as point of closest approach
and time to point of closest approach. The Mission Recovery
calculates required speed change, turn rate and altitude change
for avoiding obstacles. In Figure 8, the flow of information
between these parts is also depicted.
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Fig. 8. Simulation Internal Structure and the Flow of Information between
different parts of the simulation software

B. Module Implementation

In this section, we demonstrate a simulation that represents
how our UAV mission planning system meets the customer’s
requirements and achieve the required functionality. Our re-
quirement analysis and the artifacts that we created allow
us to identify relevant data for the simulation and organize
our numerical simulation. For this purpose, first we show
the trajectory generation for the overall mission, then we go
through the obstacle avoidance and generalize it by simulating
collision avoidance for 3 obstacles at the same time (which
was one of the mission requirements). It should be noted that
in this paper, we do not show the sensing part and we assume
that the obstacles are already sensed.

1) Path Planning Module: After modeling our simulation
system, the first step in developing our simulation is to create
the UAV trajectory based on the mission scenario. In Figure 9,
the UAV loiters in some specific locations and passes specific
waypoints. In order to generate this path, we used Dubins
airplane method [11] which allows us to generate an optimal

solution to the path planning problem.The very basic Dubins
Airplane equation of motions are as follows.

rn =V cost
re = Vsiny
g =u lur[ <1 )
ﬂ) = U2 ‘U/Q‘ S 1
Tn V cos ) cosy
Te = V sin ¢ cosy 2)
Tq —Vsiny

These equations are based on the assumptions that there are
some constraints on airspeed V, flight path angle v and the
bank angle ¢ just the same as the Dubins Car algorithm. So
the Dubins Airplane should satisfies these constaints:

¢ <o
<A
For developing our path planning module, we derived path
planning simulation Functional requirements for a non-

cooperative scenario, some of the important ones are listed
bellow:

3)

1) Generate waypoints between main waypoints using Du-
bins Path algorithms.
2) Develop candidate paths between main waypoints.
3) Choose the optimal Dubins path between each of two
waypoints among all possible generated Dubins paths.
4) Develop 3D trajectory for UAV using Dubins algorithms
for 3D environment.
5) Transfer waypoints XYZ coordinate to altitude-latitude-
magnitude coordinate using the transforming equations.
The Dubins airplane path between two nodes can be derived
using dubins motion primitives. So here you can see the
possible path between two specific nodes can be created using
the combinations of three Dubins Airplane paths. The path
is generated by including 4 nodes, which between each two
node, a Dubins Airplane path is generated, then the generated
Dubins Airplane paths combine to each other and create the
desired path between start and end waypoints.

188

North 0

Fig. 9. Path Planning and Waypoint Generation for the overall loitering
scenario. start node: [0, -200, -125], end node: [300, 300, -100], the middle
nodes are [100, 100, -100] and [300, 100, -100].



2) Collision Detection and Avoidance Module: After com-
pleting the path planning and waypoint generation, we need to
calculate how the UAV can successfully detect and avoid the
obstacles that may appear in its path. We used the Geometry
model [12] to calculate how the UAV detects the collision and
how it decides to avoid the obstacle. Both Collision Detection
and Avoidance algorithms are used the differential geometry
concepts. These algorithms can be used for one or multiple
collisions at the same time. They are also used the principals
of airborne collision avoidance systems confirming to TCAS.
This study limits the analysis to non-cooperating UAVs and
intruders. Some of the assumptions that are considered for
developing this algorithm are

e Vehicle dynamics are presented by point mass in Carte-
sian coordinates on R2.

o The threats are non-cooperative and non-maneuvering.

o The threats have been sensed by the UAV’s sensors so
the deterministic positions and velocity vector of the
intruders are determined. So the UAV can predict the
future trajectories of threats based on the current position
and velocity vectors and their linear projections.

Considering that the intruder is sensed by the sensors, the
UAV establishes a sightline between itself and the intruder.
This sightline vector is given by

T="Te — Ty- @

considering the assumptions that the velocity of both in-
truder and UAV is constant, then the differential of equation
4 is

Tte + r93n5 = Vgtq — Vuly 5

where n is the basis vector normal to the sightline for UAV
and the ¢, and ¢, are the basis vectors along to the sightline for
UAV and intruders, respectively. In the figure bellow you can
see the deferential geometry related to the UAV and intruder.

Fig. 10. Geometry of the UAV relative to the threat in the Cartesian coordinate

Components of the relative velocity vector along and normal
to the sightline are as follows. These equations are derived

from the 5 and dot product of ts and ns to the 5 equation,
respectively
T = Vgts.tqg — Uyls.ty
rés = VgNs.tg — VyNs-ty

(6)

We can also derive the relative acceleration along and normal
to the sightline by modifying equation 5 and using the Serret-
Frenet[] equations. So we have

(7 — T&;Q) = 02kots g — Vikytsny )
(rfs + 2705) = v2kons.ng — Vikyng.ny

These equations define the geometry concept of UAV rel-
ative to an intruder and show the geometry kinematics.
Both detection and avoidance algorithms are developed based
on this geometry kinematics. Functional Requirements For
developing detection and avoidance module, functional re-
quirements should be identified and trace to the software
architecture and structure. The final software should address all
defined functional requirements. Both detection and avoidance
modules, must have specific functionality to achieve desired
goals. Here, we provide a set of some of these requirements.
Collision detection simulation functional requirements for a
non-cooperative scenario are as followed:

1) Determine closest distance between intruder and UAV.

2) Determine time to closest distance between intruder and
UAV.

3) Compare the closest distance with safety circle (mini-
mum allowed distance between intruder and UAV)

4) Compare time to closest distance with look-ahead time

5) Determine if collision will occur

6) Do all the procedure for each of detected targets.

Collision avoidance simulation functional requirements for
a non-cooperative scenario are as followed:

1) Determine the speed rate.

2) Determine the heading angle rate.

3) Determine the velocity at each time step

4) Determine the angle at each time step.

5) Check if at each time step the distance between intruder
and UAV remains above safety circle.

6) For multiple collisions at the same time, the system shall
consider the maximum relative heading angle among all
heading angles between target and UAV

7) For multiple collisions at the same time, the system shall
consider the union of all conflict sectors as a conflict
resolution.

The detection algorithm that we used, works based on the
UAV’s minimum and maximum allowed speed, acceleration
and turn rate as well as look ahead time and minimum allowed
distance between UAV and obstacles. In Figure 10, the UAV
calculates the closest point of approach and the time to closest
point of approach for each of the approaching obstacles. In this
simulation, the assumption is that the obstacles’ velocity and
heading angles are constant during the detection period.

There are different scenarios in which, a collision might
occur. Based on the sensor information and the future predic-
tion of threads, the collision avoidance conditions can differ
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Fig. 11. Collision Detection of two Obstacles at the same time. The circles
indicate the collision points where the distance between UAV and the obstacle
is less than the minimum allowed distance for UAV and obstacle.

from each others. As a result, avoiding a situation in which
UAV or obstacles don’t have constant velocities or linear
trajectories, requires different avoidance actions in comparison
to situation in which velocities are constant and trajectories are
linear. The more different possibilities considered, the more
reliable collision avoidance system we have. In table II, we
considered some of possible scenarios based on UAV and
obstacles’ specifications where a, and V, are acceleration and
speed of thread respectively and a, and V), are acceleration
and speed of UAV, respectively. In this paper we aim to provide
simulation results for some of these scenarios and compare the
results with each other in order to analyze how different the
avoidance maneuver can be based on different situations.

TABLE II

POSSIBLE COLLISION SCENARIOS
Number of Va Vu Qg ay
Threads
One Constant Constant 0 0
One Constant Changing || 0 Constant
One Constant Changing || 0 Changing
One Changing || Changing || Constant Constant
One Changing || Changing || Changing || Changing
Multiple Constant Constant 0 0
Multiple Constant Changing || 0 Constant
Multiple Constant Changing || 0 Changing
Multiple Changing || Changing || Constant Constant
Multiple Changing || Changing || Changing || Changing

Avoiding all these collision situations depends on some
physical and mechanical constraints of UAVs. For having a
successful avoidance maneuvers, it is very important to exam-
ine extreme values of UAV specifications. These boundary val-
ues include but not limited to maximum and minimum UAV’s
achievable speed, maximum allowed UAV’s turn rate, max-
imum heading angle, maximum and minimum UAV tangent
acceleration. These parameters may limit the maneuverability

and agility of UAV. Since these factors are some design factors,
they should be either designed based on the importance of
UAV’s desired collision avoidance capabilities or they provide
restrictions for UAVs in order to avoid collisions. Although,
the collision avoidance algorithms used in this paper, are
practical in avoiding obstacles, as they are developed based
on UAV’s physical constraints, they cannot provide UAVs
with efficient avoidance maneuvers in all possible scenarios.
Therefore, it is very critical to identify the situations, in
which UAV is not agile enough or maneuverable enough to
do required maneuvers. In the data structure diagram that
is shown bellow, how the physical constraints of UAV can
affect on efficiency of the avoidance algorithm, is shown.
Figure 12 shows all types of data for avoidance module.
These include input data, internal data and output data. Having
this information of data, one can effectively develop software
module in a way that the data flow and required steps for
getting desired outputs will be considered and implemented.

]

Simulation Data Structure ‘

.. [mnput Data | [ Internal Data ] Output Data

-Updated UAV trajectory at each tme | |-Tum rate at each time step
- -Speed change at each time step
see B o+ |-Altitte change at each time step
-Distance between UAV and threat at each time step.
UAV Input =
-Starting waypoint
-Ending Waypoint
-Main mission waypoints.

[ simulation Input
Time Step
|-Simulation run-time

Sensing and tracking
""" -nttial postion of threat N FRa s
Initial speed of threat

Inital dire ction of threat

-niial acceleration of threat

-Predicted trajectory of threat at each time step
-Predicted speed of threat at each fime step

-

[ Collision Detection |

~Closest distance between UAV and threat
~Time {0 closest distance between UAV and threat

[ Threat Input

-Sensing and tracking input
|-Colision Detection input

-Max allowed UAV spesd
-Min alowed UAV speed
-Max allowed UAV turn rate
-Min alowed UAV tun rate
Flying alttute

Fig. 12. Data structure for collision avoidance software module containing
input data, internal data and output data of the module

The other important fact that should be evaluated when
getting simulation results, is the time required for UAVs to
process the commands and apply maneuvers. So the gap time
between understanding commands and executing them, can
cause some inaccuracies in calculation of required time to
avoid collision. In order to mitigate those inaccuracies, the
amounts of response lag in executing required command,
should be determined. This response lag will vary for different
UAVs. However, in this paper we assumed ideal situation
which means there is no lag between system’s command and
UAV execution.

Figure 13 is based on an assumption that both UAV and
obstacle’s velocities are constant and the equation of motion
for obstacle is linear. In Figure 13, we see that the UAV
changes its heading angle to avoid an obstacle. In this specific
scenario, the UAV does not need to change its speed to avoid
the obstacle, although it may need to in some other cases. The
second plot in Figure 13 shows how the UAV and obstacle
are able to remain far enough from each other. The first plot
depicts the changes of UAV heading angle in order to avoid



the obstacle. As it was mentioned before, this obstacle is non-
cooperative, so the UAV shall do all avoiding maneuvers on
its own.
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Fig. 13. Collision Avoidance from one Obstacle- UAV heading angle (top),
velocity (middle), and distance between obstacles and UAV (bottom)

3) Multiple Collision Avoidance: The next step in devel-
oping our simulation is to generalize the collision avoidance
part from avoiding one obstacle into avoiding three obstacles.
For this purpose, we simulate the scenario in which the UAV
should simultaneously avoid multiple obstacles [13]. Figure 14
indicates a situation in which the UAV should change both its
turning angle and speed to avoid the collision. In this scenario,
velocity and heading angle of obstacles are constant so they
follow linear trajectories. Also UAV has constant speed and
heading angle. This situation describes one of the possible
collision scenarios UAV should avoid.
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Fig. 14. Multiple Collision Avoidance- UAV’s Velocity and Heading Angle
Change During Time

In order to be certain that our avoidance algorithm works
properly, we capture the distances between all three obstacles

and UAV all the time . Figure 15 shows how the obstacles and
UAV are far enough from each other based on the minimum
allowed distance between UAV and obstacles. This distance is
also one of the requirements.
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Fig. 15. Multiple Collision Avoidance- UAV and All Three Obstacles During
Avoidance Time. 10m was considered as the minimum allowed distance

The other possible collision scenario that is shown in table
II, is the situation in which, obstacles and UAV’s velocities
change during collision time. The next simulation results
capture a scenario of having 3 obstacles which each of them
has a constant tangent acceleration. So, it means that we still
have future prediction of obstacles and UAV’s trajectories.
As it is shown in Figure 16, speed and turning angle rate
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Fig. 16. Multiple Collision Avoidance- For the situation in which speeds are
not constant and are changing with some constant tangent accelerations. In
this simulation result, tangent acceleration for all obstacles is 5m/s?

curves are sharper than the ones in Figure 14. We can notice
from the figure that UAV has not yet reached to its boundary
values for turn rate, velocity or acceleration. That means it
still should be able to avoid some obstacles with higher speed
or acceleration. In order to be certain that UAV is capable of
doing avoidance maneuver, we developed a test case in which,
UAV is examined by its boundary values. We tested if UAV



uses its ultimate physical and mechanical capabilities such as
maximum turn rate and speed rate, it will be able to avoid
obstacles or not! If it passes this test, then we can provide
the UAV with the best avoidance maneuver using collision
avoidance algorithms. We believe that these analysis are so
critical as sometimes sensors cannot sense obstacles in a right
time, or detection part detects collisons with some delays. In
this situation, UAV has less time to avoid obstacles and this
problem would be more serious if there are multiple threats
in the UAV’s trajectory. As an example, we provided another
simulation results in which we considered a scenario that UAV
flies in a low speed and the time to closest distance is less
than the previous scenarios. As UAV should avoid all three
collisions at the same time, it may not even use its maximum
capabilities for maneuver, cause there should be a balance in
distance between UAV and all obstacles and it cannot consider
just one collision at a time to avoid.

L

Velocity

0 L L L L L I
0 0.5 1 1.5 2

Time
Distance between obstacle and UAV
T T

T
obstacle 1|

obstacle 2

© obstacle 3

27

distance
S ow

Fig. 17. Multiple Collision Avoidance- For the situation in which UAV fies
in lower speed and has to do avoidance maneuvers. The speed of UAV is[16
10] and obstacles accelerations are [-3 5], [10 -4], [5 4] respectively

V. DISCUSSION AND FUTURE WORK

A model based systems engineering approach applied to
this projects helps us in formalizing requirements analysis
and requirement identification. System artifacts ensure the
consistency between design and requirements so the simula-
tion results and final mission planning design will satisfy the
stakeholders’ needs.

In future work, we plan to develop algorithms for co-
operative intruders and verify the results using the method
proposed in this paper. Moreover, we will explore the details
of the detection and sensing parts, which would include
some challenges about sensor systems, tracking objects and
trajectory predictions. Thus, sensor modeling would also be
considered for our future works to determine if the system can
satisfy detection and sensing requirements. Also, for design-
ing a mission, communication and navigation accuracy play
important roles in accomplishing a safe mission. Considering
these parts would be challenging and increase the uncertainty
of the results.
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