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Abstract— The integration of renewable energy generation,
such as wind power, into the electric grid is difficult because
of the source intermittency and the large distance between
generation sites and users. This difficulty can be overcome
through a transmission network with large-scale storage that
not only transports power, but also mitigates against fluctua-
tions in generation and supply. We formulate an optimal power
flow problem with storage as a finite-horizon optimal control
problem. We prove, for the special case with a single generator
and a single load, that the optimal generation schedule will cross
the time-varying demand profile at most once, from above. This
means that the optimal policy will generate more than demand
initially in order to charge up the battery, and then generate less
than the demand and use the battery to supplement generation
in final stages. This is a consequence of the fact that the
marginal storage cost-to-go decreases in time.

I. INTRODUCTION
The optimal power flow (OPF) problem is to optimize a

certain objective over power network variables under certain
constraints. The variables may include real and reactive
power outputs, bus voltages and angles; the objective may be
the minimization of generation cost or maximization of user
utilities; and the constraints may be bounds on voltages or
power levels, or that the line loading not exceeding thermal
or stability limits. The OPF has been studied for over half
a century since the pioneering work of Carpentier [1]; see
surveys for example in [2], [3], [4], [5], [6] and [7]. Its
history is roughly a continuous application of more and
more sophisticated optimization techniques [7]. Most of the
models involve static optimization as, without large scale
storage, power supply and demand must be matched exactly
at all times, and therefore OPF can be solved in isolation
from one period to the next. In this paper, we formulate
a simple OPF model with storage and study how storage
allows optimization of power generation across multiple time
periods.

The model is motivated by the intensifying trend to deploy
renewable energy such as wind or solar power. In the state of
California, peak demand for power in 2003 reached 52 GW,
with projections for the year 2030 exceeding 80 GW [8], [9].
With fossil fuel and nuclear plants retiring in the next few
decades, and a required 15% reserve margin, an additional 60
GW of new generation capacity will be needed by 2030 [9].
In 2006, Southern California Edison, the primary electricity
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utility company for southern California, signed a contract
to provide 1.5 GW of power to its customers from wind
projects in the Tehachapi area in California [10]. Not only
is renewable energy more environmentally friendly, but its
potential is high. It has been estimated that if 20% of the
energy that could be harvested from wind farms across
the globe were used, all of the world’s electricity demands
could be met several times over [11]. There are however
two major challenges in integrating wind or solar power
into the current system. First, their output fluctuates widely,
rapidly, and randomly, a great operational hurdle. Second, the
geographical locations of wind or solar farms are inevitably
far from the load centers. These two problems calls for large-
scale storage that can absorb short-term fluctuations and
transmission capacity that not only transports power from
generation to load, but can also provide spatial diversity in
generation to mitigate intermittency of renewable sources.
See, for instance, [12] for an early simulation study on
how battery can help with regulation and peak-shaving in
economic dispatch. References [13], [14], [15] investigate
the utility of energy storage in the integration of renewable
energy resources and the concept of microgrids.

The model studied in this paper does not capture the full
spectrum of issues involved in the integration of renewable
sources, but only focuses on the effect of storage to optimal
power flow. For instance, it assumes time-varying but deter-
ministic, as opposed to stochastic, generation and demand.
Moreover, the calculation of the optimal power flow assumes
the full knowledge of the demand schedule. In practice,
demands are typically estimated 24 hours in advance to an
accuracy of a few percentage points.

The classical OPF problem without storage is a static
optimization as the need to balance supply and demand at
all times decouples the optimization in different periods. The
addition of storage introduces correlation, and an opportunity
to optimize, across time, e.g., charge when (and where) the
cost of generation is low and discharge when it is high. Our
model characterizes the structure of optimal generation and
charge/discharge schedule. In Section II, we formulate the
OPF model with storage as a finite-horizon optimal control
problem. In Section III, we consider the special case with a
single generator and a single load (SGSL case). Without bat-
tery, the generation must be exactly equal to the load in each
period. With battery, we prove that the optimal generation
schedule will cross the time-varying demand profile at most
once, from above. This means that the optimal policy will
generate more than demand initially in order to charge up
the battery, and then generate less than the demand and use
the battery to supplement generation in final stages. This is a



consequence of the fact that the marginal storage cost-to-go
decreases in time. In Section IV, we discuss the optimality
conditions for the general network case and present some
numerical examples that suggest the intuition in the SGSL
case might generalize to the network case.

II. MODEL AND PROBLEM FORMULATION
We now present a simple OPF model with energy storage

and time-varying generation costs and demands. The model
ignores reactive power and makes other simplifying assump-
tions. Our goal is to understand the impact of storage on
optimal generation schedule.

Consider a set G of generation nodes/buses connected to a
set D of demand nodes/buses by a transmission network. Let
N = G ∪D be the set of all nodes. The transmission network
is modeled by the admittance matrix Y , where Yi j =Yji is the
admittance between nodes i and j. If nodes i and j are not
directly connected, Yi j = 0.

The (real) power flow from node i to node j at time
t is ViVjYi j sin(θi(t)−θ j(t)) for i #= j ∈ N . In this paper,
we will assume |θi(t)− θ j(t)| is small and approximate
sin(θi(t)−θ j(t)) by θi(t)−θ j(t) [16]. The amount of power
delivered over link (i, j) is limited by thermal effects and
network stability [17, chapter 4]. Current flows produce
power losses alongside heat generation, reducing transmis-
sion efficiency and creating line sag from temperature rises.
We capture these constraints as

ViVjYi j (θi(t)−θ j(t)) ≤ qi j(t), i #= j ∈N (1)

where qi j(t) represents the line capacity from nodes i to j.
From Kirchoff’s laws, the net power export from node i at
time t is given by

qi(t) = ∑
j∈N

ViVjYi j (θi(t)−θ j(t)) , i ∈N . (2)

If qi(t) is positive, node i supplies power at time t. Otherwise,
it consumes power at time t.

Each node i ∈D demands a fixed amount di(t) of power
at time t that must be met by supplies from the generation
nodes

qi(t) =−di(t), i ∈D . (3)

Each generation node i ∈ G has both a generator that
produces gi(t) amount of power at time t and a battery that
can charge or discharge ri(t) amount of power at time t.
The net power export qi(t) from generator node i at time t
consists of the power from the node’s generator and battery:

qi(t) = gi(t)+ ri(t), i ∈ G (4)
gi(t) ≥ 0, i ∈ G (5)

Note that ri(t) can either be negative (battery is charging)
or positive (battery is discharging). The battery energy level
bi(t) at node i ∈ G evolves according to1

bi(t) = bi(t−1)− ri(t), i ∈ G (6)

1In this paper, all power quantities such as gi(t),qi(t),ri(t),di(t) are in
the unit of energy per unit time, so the energy produced/consumed in time
period t are gi(t),qi(t),ri(t),di(t), respectively.

with given initial energy level bi(0) ≥ 0. Battery storage is
bounded by a minimum and a maximum capacity

0≤ bi(t)≤ Bi i ∈ G . (7)

We assume the cost ci(gi, t) of generation at generator
i ∈ G is a function of the amount of generated power gi and
time t. There is a battery cost hi(bi,ri) as a time-invariant
function of energy level bi and the power draw ri. Finally,
there is a terminal cost hT

i (bi(T )) on the final battery energy
level bi(T ).

The classical OPF problem without storage determines
the voltage angles θi(t), i ∈ N , and power generations
qi(t), i ∈ G , so as to minimize the total generation cost.
Without storage, there is no correlation across time, and
therefore the optimization problem is static and can be solved
in isolation from one period to the next. The transmission
network Y allows optimization across space. Storage allows
optimization across time as well, i.e., charge when (and
where) the cost of generation is low and discharge when
it is high. The optimization problems in each period thus
become coupled, yielding an optimal control problem.

Given admittance matrix Y , initial battery levels bi(0)≥ 0
and storage capacities Bi ≥ 0 for i∈ G , link capacities qi j for
i, j ∈N , and demand profiles di(t) for i ∈ D , t = 1, . . . ,T ,
the OPF problem with energy storage is
OPF-S

min ∑
i∈G

T

∑
t=1

(ci (gi(t), t)+hi(bi(t),ri(t))) (8)

+ ∑
i∈G

hT
i (bi(T ))

over θ ,q,r,g,b (9)
s.t. (1),(2),(3),(4),(5),(6),(7), (10)

where t = 1, . . . ,T in constraints (1)-(7). Note that in this
model only the generation costs ci(gi, t) and demand profiles
di(t) are time-varying.

In this paper, we restrict ourselves to the quadratic costs

ci(gi(t), t) :=
1
2

γi(t)g2
i (t), (11)

where γi(t) models the time-varying nature of the generation
costs. The convexity of ci in gi reflects the decreased effi-
ciency of the generator when producing very high amounts
of power [17, chapter 11]. We also assume a battery cost
that is independent of the power draw ri, but dependent only
on the energy level bi, i.e.,

hi(bi,ri) = hi(bi). (12)

For example, if it is desirable to maintain a full battery level
at the end of each period, then a cost function hi(bi) =
αi(Bi−bi) for some αi > 0, imposes a penalty proportional
to the deviation from its capacity.
Notations. We will use h′(b(t)) and dh

db (b(t)) interchange-
ably. For both primal variables, such as gi(t),bi(t), and their
dual variables, such as b̃i(t),bi(t),bi(t), a ∗ denotes their
value at optimality, e.g., g∗i (t),b∗i (t), b̃∗i (t), b∗i (t), b∗i (t). For
x ∈ R, [x]+ := max(x,0).



III. SINGLE GENERATOR SINGLE LOAD (SGSL) CASE

In this section we solve the simplest case of a single gener-
ator (with a battery) connected to a single load. Removal of
the network structure allows us to completely characterize
the solution and make transparent the effect of storage on
the optimal generation schedule and the optimal charge-
discharge schedule of the battery. We expect the basic insight
to generalize to the network case, the discussion of which is
in the next section.

A. SGSL model
From (2), (3), and (4) we have

g(t)+ r(t) = d(t) (13)

This simplifies the problem OPF-S into the following

min
T

∑
t=1

(c(g(t), t)+h(b(t))) + hT (b(T ))

over g(t),b(t)
s. t. b(t) = b(t−1)−d(t)+g(t) (14)

g(t)≥ 0 (15)
b(t)≥ 0 (16)
B−b(t)≥ 0 (17)

for t = 1, . . . ,T,

where b(0)≥ 0 is given, and the cost functions c and h are
given by (11) and (12) respectively. The capacity constraint
(1) degenerates into d(t)≤ q where q is the capacity of the
link connecting the generator to the load. For feasibility, we
assume that this constraint is satisfied. For t = 1, . . . ,T , let
b̃(t) be the dual variables associated with constraints (14),
λ̂ (t) with constraints (15), b(t) with constraints (16), b(t)
with constraints (17).

The problem OPF-S is a convex program and therefore
the Karush-Kuhn-Tucker (KKT) condition is both necessary
and sufficient for optimality. Differentiating with respect to
b(t), the KKT condition implies

dh
db

(b∗(t))+ b̃∗(t)− b̃∗(t +1)1(t < T ) = b∗(t)−b∗(t)

where 1 denotes the indicator function. This defines a recur-
sion on b̃∗(t) whose solution, for t = 1, . . . ,T , is

b̃∗(t) = H∗(t)+B∗(t) (18)

where

H∗(t) :=
T

∑
τ=t

−dh
db

(b∗(τ))− dhT

db
(b∗(T ))

B∗(t) :=
T

∑
τ=t

(b∗(τ)−b∗(τ)).

Here, b∗(t)b∗(t) = 0 and (B− b∗(t))b∗(t)) = 0 by comple-
mentary slackness. H∗(t) is the marginal storage cost-to-go at
time t. By assumption (see A0 below) h′(b) < 0,(hT )′(b) < 0,
and hence H∗(t) > 0. For example, if h(b) = α(B − b)
and hT (b) = αT (B− b) for some constants α,αT > 0, then
H∗(t) = α(T +1− t)+αT .

Differentiating the objective function with respect to g(t),
the KKT condition implies (b̃(t) = λ (t))

γ(t)g∗(t) = b̃∗(t)+ λ̂ ∗(t),

where λ̂ ∗(t)g∗(t) = 0 by complementary slackness. Combin-
ing with (18), the optimal solution is characterized by

g∗(t) =
[

g(t)+
B∗(t)
γ(t)

]+
(19)

b∗(t) = b∗(t−1)−d(t)+
[

g(t)+
B∗(t)
γ(t)

]+
(20)

where g(t), the nominal generation at time t, is defined as

g(t) :=
H∗(t)
γ(t)

. (21)

We now derive the structure of the optimal generation
schedule g∗ and the optimal battery energy level b∗ from
(19)–(21).

B. Optimal solution
It is instructive to first look at the case where the battery

constraint is inactive, i.e., b(t) ∈ (0,B). In this case, B∗(t)≡
0, and the nominal generation schedule in (21) is optimal,
i.e., g∗ = g. This satisfies the condition

γ(t)g∗(t) = H∗(t) =
T

∑
τ=t

−dh
db

(b∗(τ))− dhT

db
(b∗(T )).

The left-hand side is the marginal generation cost at time
t and the right-hand side is the marginal storage cost-to-go
from t to T . At optimality, one cannot reduce the cost further
by increasing (decreasing) generation by a unit and raising
(reducing) battery level by the same amount. Moreover, if
h′(b) < 0, the marginal storage cost-to-go, and therefore the
marginal generation cost, strictly decreases in time under an
optimal policy. These intuitions will generalize to the general
case when the battery constraints may be active, as we now
show.

Our first main result characterizes the optimal generation
schedule g∗(t) under the assumptions
A0: For t = 1, . . . ,T , d(t) > 0, γ(t) > 0. For b≥ 0, h′(b) < 0

and (hT )′(b) < 0;
A1: For t = 1, . . . ,T , γ(t)d(t) − γ(t + 1)d(t + 1) <

−h′(b(t)).
Assumption A1 restricts how fast the product γ(t)d(t) can
decrease. If the battery constraint is not active, then the
optimal generation g∗ will balance the marginal generation
cost and the marginal storage cost-to-go. Hence, the opti-
mal marginal generation cost γ(t)g∗(t) will decrease at the
same rate at which the marginal storage cost-to-go H∗(t)
decreases, which is the marginal storage cost h′(b∗(t)) at
time t.

The case where the battery constraint is active is more
complicated because the optimal generation must anticipate
future starvation and saturation. As we will see below, if
the product γ(t)d(t) decreases more slowly than marginal
storage cost h′(b(t)), then the optimal generation g∗ retains



a simple global structure where g∗ crosses demand d(t)
at most once, from above, and the optimal battery level
b∗ is unimodal. Indeed, under assumption A1, the optimal
generation schedule generally has three phases. In the first
phase, g∗(t) > d(t) and the battery charges. In the second
phase, g∗(t) = d(t) and the battery remains saturated at
b∗(t) = B. In the third phase, g∗(t) < d(t) and the battery
discharges. Degenerate cases where one or more of the
phases are missing are possible, depending on problem
parameters T, b(0), γ(t), and d(t).

If the battery never saturates, the optimal schedule de-
generates into (at most) two phases. If the battery does
saturate, the optimal schedule has three phases, defined by
the beginning time l + 1 and the end time m of the second
phase, with 0 < l ≤m≤ T , where b∗(t) = B for t = l, . . . ,m.
To describe the optimal generation g∗ precisely, define the
following time averages over the entire horizon and over the
initial and final phases

d :=
1
T

T

∑
t=1

d(t), γ :=

(
1
T

T

∑
t=1

1
γ(t)

)−1

,

d1 :=
1
l

l

∑
t=1

d(t), γ1 :=

(
1
l

l

∑
t=1

1
γ(t)

)−1

,

d3 :=
1

T −m

T

∑
t=m+1

d(t), γ3 :=

(
1

T −m

T

∑
t=m+1

1
γ(t)

)−1

.

Our main result implies that it is optimal to charge the battery
initially and discharge it later.

Theorem 1: Suppose A0 and A1 hold and 0 < b(0) <
B. The optimal generation g∗ crosses the demand curve
d(t) at most once, from above, and therefore the optimal
battery level b∗ is unimodal. Moreover, they take one of the
following two forms.

1) The battery never saturates, and the optimal generation
schedule is

g∗(t) = g(t)+
γ

γ(t)
[d−σ ]+

with

σ :=
1
T

T

∑
t=1

g(t)+
b(0)

T
.

Moreover, b∗(T ) = T [σ −d]+.
2) There exist times l and m, with 0 < l ≤ m ≤ T , for

which b∗(t) = B for t = l, . . . ,m. Before time l +1, the
battery charges and its stored energy strictly increases
over time towards B. After time m, it discharges and
its stored energy strictly decreases over time from B.
The optimal generation g∗ has three phases:

g∗(t) =






g(t)− γ1
γ(t) (σ1−d1), t = 1, . . . , l

d(t), t = l +1, . . . ,m
g(t)+ γ3

γ(t) [d3−σ3]+, t = m+1, . . . ,T

where

σ1 :=
1
l

l

∑
t=1

g(t)− B−b(0)
l

σ3 :=
1

T −m

T

∑
t=m+1

g(t)+
B

T −m
.

Moreover, b∗(T ) = (T −m)[σ3−d3]+.

Case 1 of Theorem 1 is illustrated in Figure 1. Here,
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charge discharge

Fig. 1. Optimal marginal generation cost γ(t)g∗(t), in comparison with
γ(t)d(t) and battery level b∗(t). This figure illustrates case 1 of Theorem 1
with d > σ .

the battery level remains strictly below B at all times. The
threshold σ is the sum of average nominal generation and
the initial battery energy per unit time. Under the nominal
generation schedule, the total available energy over the entire
period t = 1, . . . ,T is T σ . If the average demand d is lower
than the threshold σ , then the nominal generation is optimal,
g∗ = g, and the terminal battery level at the end of the
control horizon is b∗(T ) = T (σ−d). Otherwise, the nominal
generation schedule will deplete the battery level to zero
before time T , which is not optimal, and hence the generation
is shifted up by γ(d −σ)/γ(t) at each time t, so that the
battery level hits zero exactly (and only) at time T .

Case 2 of Theorem 1 is illustrated in Figure 2. In this case,
the battery level rises from b(0) to B in phase 1, stays at B
in phase 2, and drains in phase 3. The threshold σ3 is the
sum of the average nominal generation over the third phase
and the per-period battery level at the beginning of the third
phase. If the nominal generation is used in the third phase,
then the total available energy over this phase is (T −m)σ3.
If the average demand d3 over the third phase is less than the
threshold σ3, then the nominal generation is optimal in the
third phase, g∗ = g, and the terminal battery level is b∗(T ) =
(T−m)[σ3−d3]+ (this is similar to case 1 with initial battery
level B, but over only the third phase). On the other hand,
if d3 > σ3, then the nominal generation in the third phase
is shifted up in the third phase so that the battery level hits
zero exactly at time T .
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Fig. 2. Optimal marginal generation cost γ(t)g∗(t), in comparison with
γ(t)d(t), and battery level b∗(t). This figure illustrates case 2 of Theorem
1 with d1 < σ1 and d3 < σ3.

Example 1: SGSL case without assumption A1.
We present an SGSL example where assumption A1 does
not hold. The horizon T = 24 hours and each time step t
represents 1 hour. The demand profile is

d(t) = 10 · sin
(

4π
T −1

(t−1)
)

+50 GJ.

Battery capacity B is 25 GJ (billion joules), with an initial
battery level b(0) of 12.5 GJ. We set γ(t)≡ 1 in the gener-
ation cost c and use h(b) = α(B−b) with α = 2. Figure 3
shows the numerical result for one horizon representing a 24-
hour day. The optimal battery level b∗ increases to saturation,
but because demand decreases faster than that required for
Assumption A1, b∗ discharges and recharges twice more
before reaching zero at the final time. The optimal generation
g∗ remains linear (because h(b) is affine and γ is time-
invariant) when the battery charges and discharges, and
follows demand when the battery is saturated, but does so
several times over the entire control horizon.

C. Proof idea
In this subsection, we sketch the proof idea by describing

some finer properties of the optimal solution. The detailed
proofs are omitted due to space constraint.

The first lemma states that, under an optimal policy, the
battery is never exhausted until possibly the last period. This
is a consequence of the convexity of the cost function c(g, t)
in g.

Lemma 1: Suppose A0 and A1 hold. Under an optimal
policy, b∗(t) > 0 for t = 1, . . . ,T −1.

The next result describes the behavior in the third phase
of Theorem 1. Once an optimal generation g∗(t) drops
below the demand d(t), it will remain strictly below the
(time-varying) demand for subsequent periods. The battery
therefore drains. Additionally, the optimal marginal cost
γ(t)g∗(t) decreases at a rate equal to the marginal battery
cost h′(b∗(t)) at time t.

Fig. 3. Numerical results for a single generator single load when
assumption A1 does not hold. Optimal generation g∗ is linear when the
battery charges and discharges, and matches demand when the battery is
saturated.

Lemma 2: Suppose A0 and A1 hold. If g∗(t1) < d(t1) for
some t1 ∈ {1, . . . ,T −1} under an optimal policy, then

1) 0 < g∗(t) < d(t), for t = t1, . . . ,T . Moreover, for t =
t1, . . . ,T −1,

γ(t +1)g∗(t +1) =
[

γ(t)g∗(t)+
dh
db

(b∗(t))
]+

.

2) b∗(t) < b∗(t − 1) for t = t1, . . . ,T . Moreover, for t =
t1, . . . ,T −1,

b∗(t)−b∗(t +1) >
γ(t)

γ(t +1)
(b∗(t−1)−b∗(t)) .

The next result describes the behavior in the first phase
of the second case of Theorem 1. If the optimal generation
exceeds the demand at a certain time, then it must have
stayed strictly above the demand at all previous times.
Therefore the battery must have been in the charging mode
throughout this period.

Lemma 3: Suppose A0 and A1 hold. If b∗(t0) < B and
g∗(t0 +1) > d(t0 +1) for some t0 ∈ {1, . . . ,T −1} under an
optimal policy, then the following hold.

1) g∗(t) > d(t) for t = 1, . . . , t0 + 1. Moreover, for t =
1, . . . , t0,

γ(t +1)g∗(t +1) = γ(t)g∗(t)+
dh
db

(b∗(t)).

2) b∗(t) > b∗(t−1) for all t = 1, . . . , t0 +1. Moreover, for
t = 2, . . . , t0 +1,

b∗(t)−b∗(t−1) <
γ(t−1)

γ(t)
(b∗(t−1)−b∗(t−2)).

Lemmas 2 and 3 imply that the optimal generation g∗(t)
can cross d(t) at most once, from above. Moreover, the
optimal battery level is unimodal, i.e., it can only increase
initially, until possibly reaching B. If the battery becomes



saturated, it will remain saturated until the optimal generation
drops below the demand, and can then only decrease for
the remaining times. Case (1) in Theorem 1 describes the
case where b∗ is never saturated and Case (2) in Theorem
1describes the case where b∗ reaches saturation in phase two.

IV. NETWORK CASE
We now consider a general network with multiple gener-

ators and multiple loads (i.e., the problem in (8)-(10)). To
simplify, we eliminate the variables qi(t) by combining (2),
(3), and (4) into

gi(t)+ ri(t) = ∑
j∈N

Yi j (θi(t)−θ j(t)) , i ∈ G ,

−di(t) = ∑
j∈N

Yi j (θi(t)−θ j(t)) , i ∈D .

Since the problem is convex, the KKT conditions are both
necessary and sufficient. They imply the following charac-
terization of the optimal generation

g∗(t) = Γ−1(t) [H∗(t)+B∗(t)]+ (22)

where

H∗(t) = diag

(
T

∑
τ=t

−dhi

db
(b∗i (τ))

)

B∗(t) = diag

(
T

∑
τ=t

(b∗i (τ)−b∗i (τ))

)

and Γ(t) =diag(γi(t)). Here, b∗i (t) is the optimal battery level
at generator i, b∗i (t) and b∗i (t) are the Lagrange multipliers
associated with b∗i (t) = 0 and b∗i (t) = Bi at generator i. The
optimal generation given in (22) is a direct extension of (19)
and (21) from the SGSL case to the network case. The effect
of network is illustrated most prominently in the condition

[
g∗(t)+ r∗(t)
−d(t)

]
= Yθ ∗(t), (23)

where the network admittance matrix Y is given by

Yi j =
{

∑k∈N Yik, i = j
−Yi j, i #= j.

We expect the macroscopic structure of the optimal policy
to generalize from SGSL to the network case. For example,
from (22), since the marginal storage cost-to-go H∗(t) de-
creases over time as long as h′i(bi) < 0, the optimal genera-
tion g∗(t) tends to decrease over time as in the SGSL case.
Battery reserves are used to meet demands toward the end
of the horizon, relying more on power generation initially.
However, unlike in the SGSL case where the generation
and the demand are directly related, g∗(t) + r∗(t) = d(t),
in the network case, they are indirectly related through the
admittance matrix and the voltage angles as shown in (23).
This complicates the proof and the properties of optimal
policy in the network case are under current study. Here,
we present some numerical examples.

Example 2: Symmetric network with two generators.
The network consists of two generators and 20 demand

Fig. 4. Numerical results for the case with 2 generator nodes and 20
demand nodes. The configuration is symmetric, i.e. both generators are
connected to every demand node, with equal admittance Yi j for every i ∈ G
and j ∈D .

nodes. Every generator is directly connected to each of the
demand nodes, but there is no direct connection between the
two generators nor among the demand nodes. The admittance
on every link is Yi j = 1. Link capacities qi j = 1000 GJ are the
same for all i, j. T = 24 hours, Bi = 16 GJ and bi(0) = 8 GJ.
The load profile is di(t) = 3sin(πt/T )+ 1 GJ. The storage
cost is hi(bi) = α(Bi − bi) with α = 1; γi(t) = 1 in the
generation cost function ci.

The results are shown in Fig. 4. The optimal generation
decreases when the battery initially charges and then tracks
the net power output qi(t) as the battery remains saturated.
The optimal generation then becomes strictly less than the
net power output and the battery discharges until the battery
drains completely and the generation again tracks net power
output.

Example 3: Cost savings.
In this example, we consider both a SGSL case and a network
case and illustrate how the time-varying nature of γi(t) in the
generation cost can affect the cost saving. The network that
is used is similar to that in Example 2 except that the link
capacities are not symmetric: some of the link capacities
between generator 1 and the demand nodes are smaller. The
behavior is shown in Fig. 5. Interestingly, the optimal battery
energy b∗(t) of generator 2 is not unimodal, i.e., it charges
and discharges multiple times.

Without battery, the total generation must equal to total
demand at each time. In particular, for SGSL, g∗(t) = d(t)
for all t and the total cost is ∑t c(d(t), t) without battery.
With battery, the generation cost can be reduced through
optimization over time. Table I compares the optimal cost
in (8) as a percentage of total cost without battery, for
both single-generator-single-load and multi-generator-multi-
load (MGML) cases and for time-invariant and time-varying



Fig. 5. Numerical results for the case with 2 generator nodes and 20
demand nodes with unequal link capacities. Demands vary sinusoidally.

TABLE I
OPTIMAL COSTS WITH BATTERIES AS % OF TOTAL COST WITHOUT

BATTERIES

SGSL MGML
time-invariant γi 98% 97%
time-varying γi 83% 85%

γi. In the case with time-invariant γi, the cost saving is small.
With time-varying γi, the cost savings in both the SGSL
and the network cases are significantly higher. This confirms
the intuition that battery is more valuable in the presence
of fluctuations. The savings are greater in cases where the
battery charges and discharges several times over the entire
control period, which is a case that violates Assumption A1.
Then with larger or more frequent fluctuations, an optimal
policy has more opportunities to charge the batteries when
generation costs are low and discharge when they are high.

V. CONCLUSION

In this paper, we have formulated a simple optimal power
flow model with storage. We have characterized the optimal
solution for the case with a single generator and a single
load when the generation cost c(g, t) is quadratic in g and
the battery cost h(b) is strictly decreasing. In this case, under
the assumption (A1) that the demand does not decrease
too rapidly, the optimal generation schedule will cross the
demand profile at most once, from above. The optimal bat-
tery level is unimodal where the battery is charged initially,
possibly reaching saturation, and then discharges till the end
of the control horizon. We have presented some numerical
examples illustrating the behavior in the network case and
when assumption A1 is not satisfied.

We plan to extend the analysis here in several ways. First,
we will fully characterize the optimal solution in the network
case by extending our results for the SGSL case. Second,

both the demand profile and the power generation are de-
terministic in our current formulation, which is unrealistic.
We will extend the current deterministic model to include
randomness in demand and generation. Finally, we plan to
incorporate a more realistic battery model that captures the
dynamics of capacitance, as well as constraining the rate at
which the battery can be charged or discharged.
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