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Abstract— The integration of renewable energy resources,
such as solar and wind power, into the electric grid presents
challengs partly due to the intermittency in the power output.
These difficulties can be alleviated by effectively utilizing
energy storage. We consider, as a case study, the integration
of renewable resources into the electric power generation
portfolio of an island off the coast of Southern California,
Santa Catalina Island, and investigate the feasibility of replacing
diesel generation entirely with solar photovoltaics (PV) and
wind turbines, supplemented with energy storage. We use a
simple storage model alongside a combination of renewables
and varying load-shedding characterizations to determine the
appropriate area of PV cells, number of wind turbines, and
energy storage capacity needed to stay below a certain threshold
probability for load-shedding over a pre-specified period of time
and long-term expected fraction of time at load-shedding.

I. INTRODUCTION

Santa Catalina Island is 26 miles off the coast of Southern
California, USA. It is 21 miles long and 76 square miles in
area with 54 miles of coastline. The island’s population in
the 2000 census was 3,696 with 90 percent living in the two
largest cities Avalon and Two Harbors [1]. Catalina is served
by three 12kV distribution circuits that are separate from
the grid on the mainland of California with a peak demand
in 2008 of 5.7MW [2]. Currently, electricity is generated
from a central diesel plant. It is desirable to reduce diesel-
based generation for several reasons (both environmental
and economical): to reduce the emissions from diesel power
plants and to eliminate the cost of transportation of diesel
fuel to the island. Furthermore, the diesel generators are
most efficient when running at full capacity and are therefore
inefficient for Santa Catalina Island, where the daily demand
peaks for a relatively short period of time. This paper aims
to asses the feasibility of replacing diesel generation with
generation from intermittent renewable resources (e.g., solar,
wave, and wind power generation).

Fluctuation in both the generation and demand as well as
physical distance between generation sites and users make
the integration of renewable sources into the electricity grid
difficult [3], [4]. The potential benefits, however, can be
utilized by supplementing the system with energy storage
[5], [6]. Different techniques have been used in determin-
ing the correct sizing for storage needed in the presence
of intermittent renewable sources as a function of storage
efficiency, conventional fossil fuel generation and life cycle
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Fig. 1. A schematic for a power network with renewable sources. Demand
loads are met by base diesel generation, supplemented with PV cells, wind
turbines, and energy storage.

costs [7], [8], [9]. Reference [10] uses a probabilistic model
to predict the feasibility of increased renewable penetration
by investigating different types, sizes, and time scales of
storage technologies. References [11] and [12] examine the
integration of wind power into isolated systems, similar to
Catalina Island.

In this paper, we incorporate simple storage dynamics into
a load-shedding model to understand the effects of intermit-
tency in generation and/or demand on the characteristics of
the electricity network. We consider a scenario where the
electricity is supplied by a combination of solar photovoltaic
(PV) cells, wind turbines, and base diesel generation. With
these resources, we address the following design questions:
Given information about typical demand and generation
profiles over certain periods of time, what are the appropriate
amounts of each resource and energy storage capacity needed
to ensure a certain level of reliable operation [13], e.g.,
that the probability of load-shedding is smaller than a pre-
specified threshold and the long-term expected fraction of
time spent at load-shedding is sufficiently small?

II. SET UP AND PROBLEM FORMULATION

A. Simple storage model

Consider the configuration in Figure 1. In this figure and
hereafter, d(t) denotes the total amount of all loads over the
time period [t, t +1]. Additionally, s(t),w(t), and f (t) denote
the amount of energy generation by a unit area of PV cells,
a wind turbine, and diesel (fossil fuel) based generators over
[t, t +1]. The amount of energy storage at time t is denoted
by b(t) and is considered to follow the first order difference



equation

b(t +1) = b(t)+g(t)−d(t), for t = 0, . . . ,T −1 (1)

with the initial amount b(0) of storage and the length T of
the time horizon. Total generation g(t) is defined as

g(t) := γ1s(t)+ γ2w(t)+ f (t),

where γ1 and γ2 are the numbers of unit area of PV cells and
wind turbines in the system. Additionally, the following non-
negativity and capacity constraints on the amount of storage
are imposed

0≤ b(t)≤ B, for t = 1, . . . ,T,

where B denotes the storage capacity.
At time t + 1, we call the case in which the difference

between demand and total generation is strictly less than the
available stored energy, i.e.,

b(t) <−g(t)+d(t), (2)

as load-shedding.

B. Problem description
In general, the load d and renewable generation s and

w feature intermittency and fluctuations [10]. For example,
consider the daily d, s, and w profiles shown in Figure
2, which are also used in the analysis in the subsequent
sections. Each of the figures show d, s, and w at each
hour for 31 days in the month December 2009 obtained at
geographical locations with characteristics similar to those of
Santa Catalina Island (discussed at the end of this section).
The load and solar graphs follow a profile with considerable
fluctuations, while the wind profile is even less predictable.

In the face of stochasticity in both loads and generation,
we are interested in quantifying the probability of having
load-shedding and the effects of energy storage on this
probability in configurations with different levels of inter-
mittent renewable and diesel-based generation. Note that,
in general, the likelihood of load-shedding is a function
of the generation and demand profiles and, therefore, it is
a function of γ1, γ2, and B (potentially along with other
factors not modeled here). The total area of PV cells, number
of wind turbines, and capacity of storage are design-time
decisions to be made before investing in the deployment
of large renewable energy generation and accompanying
energy storage. In the following, we consider the question
of determining appropriate values for γ1, γ2, and B that lead
to an acceptable probability of load-shedding.

C. Description of data set
In this study, we use a data set including load (d), solar

generation (s), and wind generation (w) obtained in the
following way.

• Load profile: Only peak demand values are available for
Santa Catalina Island1. Therefore, load profiles are gen-
erated from a proxy distribution circuit statistically sim-
ilar to that for the island, e.g., line distances, customer

1These peak values are obtained through personal communication with
researchers from Southern California Edison
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Fig. 2. Daily load profiles on Santa Catalina Island (top), solar generation
profiles in Long Beach, CA (middle), and wind generation profiles on an
island near Santa Barbara, CA (bottom), for the month of December.

count, and climate. The proxy circuit peak is scaled to
match the peak data for each of the three distribution
circuits on the island. Hourly averages calculated for
times where more than one data point was available,
while data for missing hours are interpolated.

• Solar generation profile: Hourly data are obtained
using the Solar Advisor Model (a detailed per-
formance model for solar technologies - available
at https://www.nrel.gov/analysis/sam/) with
Long Beach, California as a geographic location and
each PV cell unit measuring 35 m2.

• Wind generation profile: Hourly data is
obtained from the National Renewable Energy
Laboratory (NREL) website available at
http://wind.nrel.gov/Web nrel/ for a station
located off an island near Santa Barbara, California.

III. PROBABILITY OF LOAD-SHEDDING

In this section, we investigate the effects of varying
amounts of renewable generation (i.e., γ1 and γ2) and storage
capacity (B) on the probability of load-shedding over the time
horizon t = 1, . . . ,T defined as

PLS := Prob[b(t)<−g(t)+d(t) for some t ∈ {0,1, . . . ,T−1}].

A. Estimating the probability of load-shedding

In order to estimate the load-shedding probability, we
quantize the allowable range [0,B] of energy storage using n
equally spaced points β1 = B > β2 > · · · > βn−1 > βn = 0 and
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Fig. 3. Construction of matrix Mi, j(t) is based on the empirical distribution
for g(t)−d(t).

assigning βn+1 as the state corresponding to load-shedding.
For i, j = 1, . . . ,n+1 and time t = 0, . . . ,T −1, define

Mi, j(t) := Prob[b(t +1) = βi | b(t) = β j]

as the probability of having a storage level of βi at time
t +1 given that the storage level B is β j at time t. Using the
data shown in Figure 2, we empirically estimate Mi, j(t) for
t = 0, . . . ,T −1 as follows. Define the intervals

I1 := [β1 = B,∞),
Ii := [βi,βi−1), for i = 2, . . . ,n,
In+1 := (−∞,βn = 0).

Then, for t = 0, . . . ,T − 1, j = 1, . . . ,n, and i = 1, . . . ,n + 1,
an empirical estimate of Mi, j(t) is the fraction of points in
the set of data points β j +g(t)−d(t) that fall in Ii with the
convention Mn+1,n+1(t) = 1 and Mi,n+1(t) = 0 for i = 1, . . . ,n.
Note that βn+1 is an absorbing state of the Markov chain
governed by the matrix M(t) [14].

Define

M := M(T −1)M(T −2) . . .M(0).

Then, the probability

Prob[b(t) <−g(t)+d(t)
for some t ∈ {0, . . . ,T −1} | b(0) = β j]

of transitioning to the load-shedding state βn+1 at some time
t = 1, . . . ,T from b(0) = β j is estimated by Mn+1, j.

B. Results
In this section, we discuss the results obtained for T = 24

hours and storage capacity B = 20 MWh using the hourly
load, solar generation, and wind generation profiles in Figure
2. A quantization increment of β j−1 − β j = 100 kWh for
i = 2, . . . ,n over [0,B] is used.

Figure 4 shows the load-shedding probabilities versus
initial storage levels for different levels of solar generation
with γ2 = 1 (i.e., a single wind turbine), and without any base
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Fig. 4. Probability of load-shedding versus amount of initial energy storage
with B = 20 MWh, T = 24 hours, and γ2 = 1 (i.e., a single wind turbine),
for different levels of solar generation.

diesel generation (i.e., w(t) = 0 and f (t) = 0 for t = [0,T ]).
Note the transition from high PLS at low levels of initial
energy storage to low PLS at higher levels of initial energy
storage. There are at least two trends in Figure 4 that are of
interest.

• As the level of solar generation increases, (i.e., γ1
increases), the amount of initial storage at which the
transition from high PLS to low PLS decreases and
approaches a constant value which can be attributed to
the mismatch between the generation and demand at the
beginning of the day due to lack of any solar generation.

• As γ1 increases, the transition from high PLS to low PLS
sharpens. This can be attributed to the higher variability
in wind generation compared to that in solar generation
(see Figure 2).

Figure 5 shows the load-shedding probabilities versus
initial amount of storage with a fixed level of solar generation
γ1 = 2 ·103 for different number γ2 of wind turbines. Similar
to the trend with increasing γ1 in Figure 4, the level of initial
storage at which the transition from high PLS to low PLS
occurs decreases with increasing γ2. Unlike the trends for
increasing γ1, PLS can be made less than one even for zero
initial storage with sufficiently large γ2 (e.g., γ2 = 5 in Figure
5).

In the results shown in Figures 4 and 5, the base diesel
generation is considered to be zero. We now include base
generation and investigate the probability of load-shedding
as a function of the level of penetration of renewable energy
resources. Assuming that the base generation PB is constant
over time, we define the penetration ratio ρ as

ρ :=
PR

PR +PB
,

where PR is the largest value of renewable generation over a
pre-specified time window of interest. For ease of presenta-
tion, we consider that solar generation is the only renewable
resource, and take PR as γ1 times the largest value of solar
generation in the data set shown in Figure 2 (middle). Then,
ρ is a function of γ1 and PB. Figure 5 shows PLS versus initial
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Fig. 5. Probability of load-shedding versus amount of initial energy storage
with B = 20 MWh, T = 24 hours, and fixed γ1 = 2 ·103 for different values
of γ2 (i.e., number of wind turbines).
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Fig. 6. The probability of load-shedding versus initial amount of storage
with B = 20 MWh and γ2 = 0 for different penetration levels ρ . γ1 = 102

(solid curves), γ1 = 103 (dashed curves), γ1 = 104 (solid curves with square
markers).

amount of storage with γ2 = 0 for different penetration levels
ρ .

IV. LONG-TERM DURATION OF LOAD-SHEDDING AND
ENERGY NOT-SERVED

The simple load-shedding characterization discussed in
Section III does not distinguish between levels of load-
shedding by using a single lumped state βn+1 corresponding
to the condition b(t) < −g(t) + d(t). In this section, we
modify the load-shedding characterization to allow multiple
levels of deficit d(t) − g(t) − b(t). This characterization
allows us to estimate the (long-term) expected time spent
at a load-shedding state and expected amount of energy not-
served. To this end, let β1 = B > β2 > · · · > βn−1 > βn = 0 be
equally spaced points over [0,B] as before and βn+1, . . . ,βn+m
be such that βn = 0 > βn+1 > · · · > βn+m. Consider that the
amount of energy storage evolves by following the difference
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Fig. 7. Transitions governed by (3) for three different values of storage at
time t.

equations

b(t +1) = b(t)+g(t)−d(t) if b(t)≥ 0
b(t +1) = b(t)+g(t) if b(t) < 0 (3)

with saturation at βn+m and B. Figure 7 depicts the transitions
for three different values of “storage” at time t.

Note that, in (3), a negative value for b(t) is used to
quantify the severity of load-shedding and βn+1, . . . ,βn+m < 0
correspond to different levels of load-shedding. With poten-
tial abuse of terminology, we do not distinguish between
b(t) ≥ 0 and b(t) < 0 and refer to both as the amount of
storage. The transitions from storage levels β j ≥ 0 and β j < 0
are different. If the storage level b(t) = β j < 0, then generated
energy is used to reduce the severity of load-shedding.

We again empirically estimate the probability Mi, j(t) of
having b(t +1) = βi given that b(t) = β j for t = 0, . . . ,T −1.
To this end, define

I1 := [β1 = B,∞),
Ii := [βi,βi−1), i = 2, . . . ,n+m−1,
In+m := (−∞,βn+m−1).

Then, an empirical estimate of Mi, j(t) is the fraction of points
in the set of points

• β j + g(t)− d(t) that fall in Ii for i = 1, . . . ,n + m and
j = 1, . . . ,n

• β j +g(t) that fall in Ii for i = 1, . . . ,n+m and j = n+
1, . . . ,n+m.

Define
M := M(T −1)M(T −2) . . .M(0).

In the case where M has a unique eigenvalue at 1 with
Mπ = π, πi ≥ 0 for i = 1, . . . ,n+m and π1 + · · ·+πn+m = 1,
π is called the stationary distribution for the Markov chain
induced by M and the i−th entry πi of π can be interpreted as
the long-term expected fraction of time b(t) spends at state βi
(regardless of the initial conditions) at times t = 0,T,2T, . . .
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and γ2, for B = 3 MWh (solid) and B = 10 MWh (dash-dot).

[14], [15]. Let π be the stationary distribution for M (if it
exists) and define

p(t) := M(t−1) . . .M(0)π, t = 0, . . . ,T −1.

Then, the long-term expected fraction of time spent at a load-
shedding state can be estimated as

1
T

T−1

∑
t=0

n+m

∑
i=n+1

pi(t).

The long-term expected (normalized) energy not-served over
the period [0,T ] due to load-shedding can be estimated as

1
T

T−1

∑
t=0

n+m

∑
i=n+1

|βi|pi(t).

Figure 8 shows the long-term expected fraction of time
spent at a load-shedding state with two different storage
capacities B = 3MWh (solid, black curves) and B = 10MWh

Fig. 10. The long-term expected fraction of time spent at a load-shedding
state as a function of γ1 (with γ2 = 0) for varying levels ρ of penetration of
renewable generation for two different storage capacities B = 3 MWh (solid)
and B = 10 MWh (dash-dot). The curves for ρ = 0.5 are indistinguishable.

(dash-dot, magenta curves) for varying values of solar (i.e.,
γ1) and wind (i.e., γ2) generation. Figure 9 shows the ratio
of the long-term expected normalized energy not-served due
to load-shedding over a day to the expected total demand
(load), i.e., mean of 1

T ∑T−1
t=0 d(t), as a function of γ1 and γ2

for B = 3 MWh (solid) and B = 10 MWh (dash-dot). Both
quantities decrease with increasing levels of generation with
fixed storage capacity and with increasing storage capacity
for fixed γ1 and γ2. Figure 10 shows the effect of penetration
ρ of renewable generation (as a function of the level of
solar generation – with no wind generation) on the long-term
expected fraction of time spent at a load-shedding state. Note
three trends in the expected fraction of time at load-shedding:

• it increases with increasing penetration;
• for fixed ρ , it is smaller with B = 10 MWh compared

to that with B = 3 MWh; and
• the down-shifting effect reduces with the decrease in

the penetration level.
This final observation suggests that the amount of storage
capacity will affect the tolerable level of penetration of
renewable generation.

V. EFFECTS OF STORAGE EFFICIENCY

Let us re-write the evolution of the amount of storage as

b(t +1) = b(t)+ e(t), for t = 0, . . . ,T −1, (4)

where e(t) denotes the amount of energy flow into the storage
over [t, t + 1] if e(t) ≥ 0 and the amount of energy flow
out from the storage if e(t) ≤ 0. Let 0 < εi ≤ 1 denote the
efficiency of energy in-flow and 0 < εo ≤ 1 the efficiency
of energy out-flow. In order to investigate the effects of the
efficiency of charging and discharging, let us modify (4) as

b(t +1) = b(t)+min
{

εie(t),
1
εo

e(t)
}

. (5)

Define the overall efficiency of storage as ε := εiεo. Figure 11
shows the probability of load-shedding over 24 hours versus
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Fig. 11. Probability of load-shedding versus amount of initial storage with
B = 20MWh, γ1 = 104, γ2 = 1, and T = 24 hours for varying values of ε.
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Fig. 12. The effect of varying efficiency ε of storage as a function of γ2
on the long-term expected fraction of time spent at a load-shedding state
for fixed values of γ1 = 104 and B = 3 MWh.

amount of initial storage with B = 20MWh, γ1 = 104, γ2 = 1,
and T = 24 hours for varying values of ε where εi = εo =

√
ε

(obtained by repeating the analysis of section III.A with the
dynamics in (5)). Note that the amount of initial storage
at which the transition in the probability of load-shedding
from high to low values happens increases with decreasing
efficiency.

Figure 12 shows the effect of variations in storage effi-
ciency on the long-term expected fraction of time spent at
a load-shedding state as a function of γ2 for fixed γ1 = 104

and B = 3 MWh. A similar trend is observed for increasing
γ1 with fixed γ2. Note that, for fixed γ1, γ2, and B, a decrease
in the storage efficiency leads to an increase in the expected
fraction of time at load-shedding.

VI. DISCUSSION

We now discuss how the results presented in the previous
section can be translated into design choices. To this end,
consider the four configurations corresponding to the crosses
in Figure 13 for fixed storage capacity B = 20 MWh. Table
I shows the area of PV cells and number of wind turbines
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Fig. 13. The long-term expected fraction of time spent at a load-shedding
state as a function of γ1 and γ2 for a fixed value of storage capacity B = 20
MWh.

needed to guarantee specified levels of long-term expected
fraction of time at load-shedding. Finally Table II provides
the volume of three different storage systems that are capable
of supplying B = 20 MWh [6], [16].

TABLE I
AREA OF PV CELLS AND NUMBER OF WIND TURBINES FOR SPECIFIED

LONG-TERM EXPECTED FRACTION OF TIME AT LOAD-SHEDDING

FOT area of PV cells number of wind turbines
0.1 105 ·103 m2 (25.9 acres) 2

0.01 105 ·103 m2 (25.9 acres) 3
0.01 17.5 ·103 m2 (4.3 acres) 5
0.001 38.5 ·103 m2 (9.5 acres) 5

TABLE II
VOLUME OF DIFFERENT STORAGE OPTIONS WITH B = 20 MWH

Type of storage Energy density[
kWh/m3] Volume [m3]

Pumped-hydro
(100m of altitude) 0.28 ∼ 5×117×117

∼ 41×41×41
Compressed air 4.17 ∼ 17×17×17

Lithium-ion battery 300 ∼ 4.1×4.1×4.1

VII. CONCLUSIONS AND FUTURE WORK

Motivated by the challenges associated with integration
of renewable energy resources in to the electric grid due
to source intermittency, we considered a case study on an
island off the coast of Southern California, Santa Catalina
Island, and investigated the feasibility of replacing diesel
generation entirely with solar photovoltaics (PV) and wind
turbines, supplemented with energy storage. We used a
simple storage model alongside a combination of renewables
and varying load-shedding characterizations to determine
the appropriate number of PV cells, wind turbines, and
energy storage capacity necessary to remain below a certain
threshold probability for load-shedding over a pre-specified



period of time and long-term expected fraction of time at
load-shedding. Present work focuses on the validation the
results using more complicated storage models and load-
shedding characterizations as well as data with smaller time
increments. Neglected in this paper, but a natural extension
of this work is the incorporation of the effects of transmission
and distribution.
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