ENES489P: SYSTEMS ENGINEERING PROJECTS

Introduction to Systems Engineering

Mumu Xu
Email: mumu@umd.edu

Institute for Systems Research | Aerospace Engineering
SYSTEMS ENGINEER: “BEST JOB IN AMERICA”

Money Magazine
Best Jobs in America by Donna Rosato with Beth Braverman and Alexis Jeffries. Oct. 9, 2009
Source: MoneyOnCNNMoney.com

“Money and PayScale.com, a leading online provider of employee-compensation data, surveyed 35,000 people online about what makes a great job. They rated intellectual challenge, a passion for the work, and flexibility just as highly as security.

1. Systems Engineer
 Median salary (experienced): $87,100
 Top pay: $130,000
 Job growth (10-year forecast): 45%
 Sector: Information Technology

What they do: They're the "big think" managers on large, complex projects, from major transportation networks to military defense programs. They figure out the technical specifications required and coordinate the efforts of lower-level engineers working on specific aspects of the project.

Why it’s great: Demand is soaring for systems engineers, as what was once a niche job in the aerospace and defense industries becomes commonplace among a diverse and expanding universe of employers, from medical device makers to corporations like Xerox and BMW. Pay can easily hit six figures for top performers, and there's ample opportunity for advancement. But many systems engineers say they most enjoy the creative aspects of the job and seeing projects come to life. "The transit system I work on really makes a tangible difference to people," says Anne O’Neil, chief systems engineer for the New York City Transit Authority.

Drawbacks: Long hours are common; project deadlines can be fierce.

Pre-reqs: An undergrad engineering degree; some jobs might also require certification as a certified systems engineering professional (CSEP).

Our Definition

- Systems engineering is a discipline that lies at the crossroads of engineering and business concerns.

- Specific goals are to provide:
 - A balanced and disciplined approach to the total integration of the system building blocks with the surrounding environment.
 - A methodology for systems development that focuses on objectives, measurements, and accomplishment.
 - A systematic means to acquire information and identify areas for trade-offs in cost, performance, quality, etc.
Practicing Systems Engineers

• Typical concerns on the design side:
 • What is the required functionality?
 • How well should the system perform?
 • What about the cost/economics
 • How will functionality be verified and validated?

• Typical concerns on the management side:
 • What processes need to be in place to manage the development
 • What kind of support for requirements management will be needed?
SE in Mainstream US Industry

Breadth

Depth

Systems Engineering
Liaison among disciplines
Systems analysis and trade-off

Modeling and Simulation
Liaison among disciplines
Engineering

Systems Tools Networking Systems and Simulation
Liaison among disciplines
Computer hardware and software.

Finance, Accounting Strategic planning Business
Liaison among disciplines
SE at the Project Level

Systems are developed by teams of engineers – the team members understand one another's work. Integration of team efforts.

Separation of concerns for team development.
Coordination of activities.

Trade studies to balance competing design and market criteria.

Abstractions Viewpoints

Integration of team efforts.
Reallocate system resources.
Trade-off cost and performance criteria.

Validation and Verification

EPA

Project Requirements

Subsystem 1

Specification 1

Team 1

Req 1 / Spec. 1

Subsystem 2

Specification 2

Team 2

Req 2 / Spec. 2

Subsystem 3

Specification 3

..... Team 3

Req 3 / Spec. 3

EPA Test

Systems Integration and Test.

Test Req.
Motivation

• We need a better approach to Systems Engineering

• Definition: System Integration
 • Process of deliberate assembly of parts of a system into functioning whole

• Complications kept in check through decomposition of separation of design concerns
 • Worked well when development was in-house
 • Modern systems are geographically distributed and much more complex
Increasing Demand for Limited Resources

By 2045 global population is projected to reach nine billion. Can the planet take the strain?

As we reach the milestone of seven billion people in 2011, it’s time to take stock. In the coming decades, despite falling birthrates, the population will continue to grow—mostly in poor countries. If the billions of people who want to boost themselves out of poverty follow the path blazed by those in wealthy countries, they too will step hard on the planet’s resources. How big will the population actually grow? What will the planet look like in 2045? Throughout the past year we offered an in-depth series exploring those questions. The answers will depend on the decisions each of us makes.
Information-Centric Systems
Increasing Sensing Information

• Sensing in Aerospace Systems
 • F-16 (1974), 15 subsystems; $O(10^3)$ interfaces, 40% software
 • 2 million lines of code
 • F-35 (2006), 130 subsystems; $O(10^5)$ interfaces, 90% software
 • 8 million lines of code
Example 1: Boeing 787

- Outsourced 70%: US, Asia, Europe, Australia
- 50 Tier 1 companies; Tier 2 and Tier 3 supply to Tier 1
- Final assembly ~3 Days
- Additional $12-18 billion due to delays
- Fuel Tanks
 - Jan 8, 2013 – 150L oil spill JAL in Boston
- Electronics
 - Dec 4, 2012 – United emergency landing
 - Dec 13, 2012 – Qatar grounded electric distribution problem
 - Dec 17, 2012 – Second United emergency landing
 - Jan 7, 2013 – Fire from Li-Ion battery JAL
 - Jan 8, 2013 – United faulty wiring to battery
- Engines
 - July 2012 – Fan shaft engine fails runway test
 - Jan 11, 2013 – Oil leak from engine
- Brakes
 - Jan 9, 2013 – All Nippon cancels flight, computer wrongly reports brake problem
- Cockpit
 - Jan 11, 2013 – Window cracks
 - Jan 15, 2013 – Smoke alert goes off
Example: Airbus A380

- Additional $6 billion additional costs
- Poor decisions and poor interactions led to one major poor decision
- Delay of 2 years due to complex wiring
- 530 km wire, 100K wires, 40K connectors, 1K functions
- First prototype Toulouse France, all wires too short
- Problem: Development 16 sites, 4 countries
 - Germany/Spain version 4 CAD
 - France/Britain upgraded version 5 (complete re-write)
- 1000 German engineers camped outside production facility
- Reason: co-CEOs were German and French. Airbus was a consortium of companies that merged in the 70s.
Lines of Code

![Software Size (million Lines of Code)]

- Modern High-end Car
- Facebook
- Windows Vista
- Large Hadron Collider
- Boeing 787
- Android
- Google Chrome
- Linux Kernel 2.6.0
- Mars Curiosity Rover
- Hubble Space Telescope
- F-22 Raptor
- Space Shuttle
Error-Free Software

• Software and communication technologies need to deliver functionality that is correct and works with no errors
• Mars Climate Orbiter – 1999 probe lost ($125 million)
 • Two teams: imperial and metric
 • Problem: did not consider entire mission as a system; communication and training inconsistent; no complete end-to-end verification of software
• ACA Website
 • Overwhelmed with traffic on first day
 • 14 states (and DC) ran own site. 36 run by federal government
 • Problem: figuring out subsidies depends on IRS income
 • US Citizenship (Social security); Immigration status (DHS); No double-insurance (Veterans health administration, DOD, Office Personnel Management, Peace Corps, State Medicaid, Children’s Health Ins. Program)
 • Once purchased, exchange provides information to insurance company
 • Traffic overload, large number of interactions with databases, tight deadline and limited budget
Models of Development: Waterfall

- Works well when solution method understood
- Limit: Changing requirements can cause cost overrun
Models of Development: Spiral

- Assessment of management risk at regular stages
- Limit: Model can be easily corrupted and lead to sloppy work
Models of Development: V-Model
Model-Based Systems Engineering

- MBSE: Focuses on development of models as opposed to documents
- Definition: formalized application of modeling to support systems requirements, design, analysis, V&V activities beginning in the conceptual design phase and continuing throughout development and life cycle phases – INCOSE
- Good solutions have:
 - Semi-Formal methods
 - Formal models
 - Abstraction
 - Decomposition
 - Composition
Strategies

- Function before Physical
 - Function that systems intend to provide
 - Candidate architecture for realizing that functionality
ENES 489 Preview

Problem Domain

Solution Domain

Goals and Scenarios

Operations Concept

System Behavior

Performance Attributes

Project Requirements

System Structure

Objects and Attributes

System Design

System Evaluation

System Specification

Traceability

Traceability via use cases.

Traceability

Selection of System Architecture

Mapping

Iteration strategy to satisfy constraints.

Detailed description of the system’s capabilities.

Traceability
Key Points

- Functional description dictates what the system must do
- A complete system description will also include statements on minimum levels of acceptable performance and maximum cost
- Further design requirements/constraints will be obtained from the structure and communication of objects in the models for system functionality
SysML Diagrams

- Graphical Modeling Language
- Supports specification, analysis, design, V&V of systems
- Not a methodology or a tool