
ParaMagic
®
 17.0.2 Tutorials

75 Fifth Street NW, Suite 213

Atlanta, GA 30332, USA

Voice: +1-404-592-6897

Web: www.InterCAX.com

E-mail: info@intercax.com

ParaMagic
TM

 v17.0.2 (beta)

Tutorials

Table of Contents

ParaMagic
TM

 v17.0.2 (beta) .. 1

1 Introduction and review .. 4

1.1 Introduction .. 4

1.2 Short Review of SysML ... 5

1.3 Short Review of Solving Equations ... 7

2 SysML Parametrics Tutorial - Addition .. 9

2.1 Objective ... 9
What the User Will Learn .. 9

2.2 Step-by-Step Tutorial .. 9
Step I Create Project ... 9
Step II Create Infrastructure ... 10
Step III Create Structural Model ... 11
Step IV Create Constraints ... 13
Step V Create Parametrics Model ... 14
Step VI Validate Parametrics Model .. 16
Step VII Create an Instance .. 16
Step VIII Solve the Instance ... 20

3 SysML Parametrics Tutorial - Satellite ... 21

3.1 Objective ... 21
What the User Will Learn .. 21

3.2 Step-by-Step Tutorial .. 21
Step I Create Project ... 21
Step II Create Infrastructure ... 22
Step III Create Structural Model ... 22
Step IV Create Constraints ... 23
Step V Create Parametrics Model ... 26
Step VI Validate Parametrics Model .. 28
Step VII Create an Instance .. 28
Step VIII Solve the Instance ... 30

4 SysML Parametrics Tutorial - LittleEye ... 34

4.1 Objective ... 34
What the User Will Learn .. 34

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 2

4.2 Step-by-Step Tutorial .. 35
Step I Create Project ... 35
Step II Create Infrastructure ... 35
Step III Create Structural Model ... 35
Step IV Create Constraints ... 36
Step V Create Parametrics Model ... 36
Step VI Validate Parametrics Model .. 39
Step VII Create an Instance .. 39
Step VIII Solve the Instance ... 40

5 SysML Parametrics Tutorial - CommNetwork .. 44

5.1 Objective ... 44
What the User Will Learn .. 44

5.2 Step-by-Step Tutorial .. 44
Step I Create Project ... 44
Step II Create Infrastructure ... 44
Step III Create Structural Model ... 45
Step IV Create Constraints ... 48
Step V Create Parametrics Model(s) .. 48
Step VI Validate Parametrics Model .. 50
Step VII Create an Instance .. 50
Step VIII Solve the Instance ... 53

6 SysML Parametrics Tutorial - Orbital .. 54

6.1 Objective .. 54
What the User Will Learn .. 54
System Requirements .. 55

6.2 Step-by Step Tutorial .. 55
Step I Create Project ... 55
Step II Create Infrastructure ... 55
Step III Create Structural Model ... 55
Step IV Create Constraints ... 57
Step V Create Parametrics Model ... 59
Step VI Validate Parametrics Model .. 60
Step VII Create an Instance .. 60
Step VIII Solve the Instance ... 65

7 SysML Parametrics Tutorial - HomeHeating .. 68

7.1 Objective .. 68
What the User Will Learn .. 68

7.2 Step-by Step Tutorial .. 69
Step I Create Project ... 69
Step II Create Infrastructure ... 69
Step III Create Structural Model ... 69
Step IV Create Constraints ... 70
Step V Create Parametrics Model ... 72
Step VI Validate Parametrics Model .. 72
Step VII Create an Instance .. 72
Step VIII Solve the Instance ... 75

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 3

8 SysML Parametrics Tutorial – LittleEye Trade Study .. 77

8.1 Objective .. 77
What the User Will Learn .. 77

8.2 Step-by-Step Tutorial .. 77
Step VII Set-up a Trade Study ... 77
Step VIII Run the Trade Study ... 79

9 SysML Parametrics Tutorial - Electronics .. 80

9.1 Objective .. 80

9.2 Step-by-Step Tutorial .. 81
Step I Create Project ... 81
Step II Create Infrastructure ... 81
Step III Create Structural Model ... 81
Step IV Create Constraints ... 83
Step V Create Parametrics Model ... 84
Step VI Validate Parametrics Model .. 85
Step VII Create an Instance .. 85
Step VIII Solve the Instance ... 87
Step VII Create an Instance (Second Configuration) ... 88
Step VIII Solve the Instance (Second Configuration) .. 88

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 4

 1 INTRODUCTION AND REVIEW

1.1 Introduction

 The primary purposes of SysML up to this point have been Documentation, precise specification

of system design, and Communication, sharing the design among multiple parties. Adding parametric

execution to SysML enables additional purposes,

 Consistency, enforcing internal relationships to insure a coherent, self-consistent data set;

 Simulation, evaluating the performance, cost and other parameters of the system design;

 Verification, integrating checks of system properties against requirements.

Our general approach for tutorials on creating SysML model with parametrics follows

I. Create Project

II. Create Infrastructure

III. Create Structural Model

IV. Create Constraints

V. Create Parametric Model

VI. Validate Parametric Model

VII. Create an Instance

VIII. Solve the Instance

Steps I and III are equivalent to those already performed by SysML users and it is generally

straightforward to add parametrics to existing models. Step II, Infrastructure, requires the user to import a

standard module into each project to enable parametrics execution. Step IV, Constraints, has the user

define the generic mathematical relationships to be used. Step V “wires up” the connections between

numerical attributes in the structural model and the constraint equations, using one or more SysML

Parametric diagrams. Step VI, Validation, checks that the parametrics model is properly constructed for

the InterCAX plug-in. In Step VII, the user must create a specific example of the model, populating some

of the attributes in the model with real numbers and identifying others as unknowns to be calculated in

Step VIII. This outline is not offered as a general methodology for building parametric models, so much

as a helpful outline for organizing the detailed instructions.

Before the user can reproduce these tutorials, the user must install and configure

 MagicDraw 17.0.1

 MagicDraw SysML 17.0.1 plug-in

 ParaMagic 17.0.1 or 17.0.1 Lite, the InterCAX SysML Parametrics plug-in for

MagicDraw

 Mathematica 8 (Wolfram Research) and/or OpenModelica 1.7 (or 1.8)

Several features of the tutorial models are specific to the MagicDraw and ParaMagic 17.0.1 and may not

work correctly with earlier versions. Contact NoMagic or InterCAX for further information.

The fifth and sixth tutorials use two additional tools:

 Microsoft Excel

 MATLAB (The MathWorks, Inc.) with the Simulink toolkit

In each case, refer to the installation instructions in the appropriate user guide. It is also necessary to

modify ParaMagic so that it points to the copy of Mathematica. We assume that MagicDraw, ParaMagic,

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 5

OpenModelica MATLAB and Excel (if required) are all installed on the user’s local machine.

Mathematica may be local or accessed through a web services interface.

The first tutorial, Addition, starts with three objects in the simplest possible relationship, a + b =

c, and describes the steps in minute detail for those unfamiliar not only with parametrics, but with the

MagicDraw SysML plug-in (MagicDraw Version 17.0.1) as well. In the later tutorials, we will hide more

of the procedural detail as we model more complex and realistic systems.

The second tutorial, Satellite, models the weight and power budgets of a satellite system,

introducing concepts of hierarchy, requirements and multiple constraints. The third tutorial, LittleEye,

models the operational capability of an unmanned aerial vehicle, introducing object-oriented

programming in model design and non-arithmetic functions. The fourth tutorial, CommNetwork,

introduces the use of simple elements to build up and simulate more complex networks.

The fifth and sixth tutorials provide an introduction to special features for interfacing to Excel

and MATLAB. The Orbital tutorial shows how Excel may be used to load initial values into a model for

space mission planning and to record parametric simulation results. The HomeHeating tutorial

demonstrates how external functions and scripts programmed in MATLAB can be integrated into the

parametric simulation. MATLAB scripts can, in turn, call Simulink models.

The seventh tutorial extends the LittleEye model from the third tutorial to demonstrate trade

studies. The eighth tutorial, Electronics, introduces complex aggregates and generalization, powerful

features of SysML that allow a simple parametric model to apply to a wide range of concrete system

realizations.

Several of the tutorial models cannot be executed by ParaMagic 17.0.1 Lite because they include

model elements that are not supported, including MATLAB, custom Mathematica and complex aggregate

functions. Table 1.1 summarizes this information.

Tutorial ParaMagic™ ParaMagic™ Lite
Addition Yes Yes

Satellite Yes Yes

LittleEye Yes Yes

CommNetwork Yes Yes

Orbital Yes Partial (No Mathematica graphing)

HomeHeating Yes No (MATLAB function and script)

LittleEye Trade Study Yes Yes

Electronics Yes No (complex aggregates)

Table 1.1 Tutorial Applicability for ParaMagic™ and ParaMagic™ Lite

As in many subjects, the best way to learn SysML Parametrics is by doing. The author

recommends building the models described in the first four tutorials, comparing your results with the

figures in the text and exploring variations. There are generally multiple ways to implement any model

and, in a few cases, alternate procedures are described. The author would appreciate user feedback on

errors and unclear descriptions in this document (info@intercax.com).

1.2 Short Review of SysML

SysML is a powerful and wide-reaching language for modeling systems. In this section, we will review a

few aspects of SysML of special importance to parametrics, to help make sense of the detailed

instructions in the tutorials for new users with limited SysML experience. This is not intended as a broad

introduction or primer on SysML.

SysML supports three major classes of diagrams, which are ways at the looking at the system model:

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 6

 Structure diagrams, which describe what the system is composed of. Parametrics is part of

structure and these diagrams are our principal focus in the tutorials.

 Behavior diagrams, which describe what the system does. We will not deal with any behavior

diagrams in these tutorials.

 Requirements diagrams, which describe the design and performance objectives the system must

meet. We introduce requirements diagrams in the tutorials Satellite and Electronics, to show how

parametrics can help build requirements checking into a system model.

With respect to structure diagrams, there are three important types. These are illustrated in Figure 1.1.

 Block definition diagrams (BDD), which describe the organization of the structure, the hierarchy

of system, subsystems, and all the elements that make up the system. In Figure 1.1, the Body,

Engine, and Wheels are elements that belong to the object Automobile, the ownership

relationships shown in black. Our tutorials usually begin by creating a BDD.

 Internal block diagrams (IBD), which describe qualitative flows between elements. In Figure 1.1,

gasoline flows from a tank in the Body to the Engine, as shown in red. In the tutorial

CommNetwork, we use an IBD to keep track of message traffic channels between stations, but

IBDs do not affect parametrics directly.

 Parametric diagrams (PAR), which describe quantitative relationships between properties of the

elements. In Figure 1.1, mileage, which is a property of Automobile, is a function of the drag of

the Body, the efficiency of the Engine, and so forth in green. Creating and executing parametric

diagrams is the primary focus of these tutorials.

Figure 1.1 Structure diagram relationships

Finally, we need to clarify three types of objects within the system: blocks, part properties, and instances.

Examples are illustrated in Figure 1.2.

 Blocks represent a generic object, like the Wheel in Figure 1.2a. A block may have value

properties which describe it, like model number or radius, but these properties typically do not

contain specific values.

 Part properties represent usages of a block; i.e. a block as part of some larger system. In Figure

1.2b, Front Wheel and Back Wheel are two separate roles that Wheel plays as part of Motorcycle.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 7

 Instances represent a specific example of a generic object, like WhiteWallRadial in Figure 1.2c.

The value properties have specific values, which may be fixed or calculated from other system

values. ParaMagic executes parametric calculations for specific instances of system models.

Figure 1.2a Block Figure 1.2b Part Properties Figure 1.2c Instance of a Block

1.3 Short Review of Solving Equations

ParaMagic’s primary function is to solve the often-complex network of parametric equations within the

system model, so it is valuable to review a few concepts that will come up in the tutorials.

Causality is the organization of known and unknown variables in the equations. ParaMagic requires the

assignment of a causality state to each variable, which can be done manually by the user or semi-

automatically by the ParaMagic program. The allowable causality states are

 Given – a parameter with a known value provided by the user before the ParaMagic calculation.

 Target – a parameter with an initially unknown value that the user specifically wishes to

calculate. Each ParaMagic calculation requires at least one target variable.

 Undefined – a parameter with an initially unknown value, that may be calculated in the process of

solving for the target.

 Ancillary – an undefined parameter after its value has been calculated by ParaMagic. It can’t be

assigned before solution.

In the text, causalities are denoted in italics.

As an example, consider the two equation network

a + b = c c + d = e

Our objective is to calculate e, which is assigned target causality. If we know beforehand that a = 3, b =

2, and d = 5, these parameters would be assigned given causality. The remaining parameter, c, could be

assigned undefined causality. When c is solved for in calculating e, its causality changes to ancillary. It is

also possible to assign both c and e to target causality, but multiplying targets unnecessarily may slow

down solving for larger equation sets.

Assigning causality requires consideration of overconstraint/underconstraint. Underconstraint occurs

when insufficient variables are assigned values (and given causality) to calculate the targets. For

example, in the equations above, if we set a = 3 and d = 5, there are an infinite number of solutions for e

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 8

and the equation set is underconstrained. Alternately, if we assigned a = 3, b = 2, d = 5, and e = 6, the

system is overconstrained and there are zero possible solutions for c. In general, Mathematica and

OpenModelica, the solver engines for ParaMagic, will alert the user when overconstraint/underconstraint

occurs, but some analysis by the user might be required to determine the correct number of knowns for

complex equation sets. In general, Mathematica is more robust in dealing with overconstraint/

underconstraint issues than OpenModelica.

A third issue to consider in assigning causality is reversibility. Some equations, like c = a + b, are

reversible or acausal. We can solve for c knowing a and b, or we can solve for a, knowing b and c.

Other equations are not. a = sin(b) can be solved uniquely for a knowing b, but may have multiple

possible solutions for b knowing a (e.g. for a = 0, b can be equal to 0, π, 2π, …). Similarly, a =

minimum(b,c,d) is not always reversible. ParaMagic treats these types of equations as “one-way” and

causality assignments must take this into account.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 9

 2 SYSML PARAMETRICS TUTORIAL - ADDITION

2.1 Objective

 Create a SysML project with three elements. Each element has one attribute. The attribute of the

third element is the sum of the first two attributes. Create an instance of this model and solve for the third

attribute parametrically.

Figure 2.1 Outline of Objective

What the User Will Learn

 Creating the basic elements of SysML models in MagicDraw: blocks, properties, constraints,

etc.

 Building a SysML parametrics model and diagram

 Creating a instance of the model with input and output parameters

 Opening and using the ParaMagic browser window

 Exporting a parametrics model to Mathematica

2.2 Step-by-Step Tutorial

 Step I Create Project

1. Open MagicDraw.

2. On MagicDraw menu bar, select Options→Perspectives→Perspectives and set to System

Engineer.

3. Create new project

a. On MagicDraw menu bar, select File→New Project,

b. In New Project window (Figure 2.2), choose SysML Project,

c. Set Name = Addition. User-assigned names and constraints for specific SysML

elements are given in Bold.

d. Set or browse for location to save project.

4. Create a package within the project

a. RC (Right-click) on Data folder in Containment tree (Figure 2.3)

b. Select New Element→Package

c. Enter Name = Addition

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 10

Note for Mac Users: Right-Click is substituted by the Mac keystroke: Control-Click. While ParaMagic is

compatible for both Windows and Macintosh operating systems, certain keystrokes and paths are

bound to vary. The author will make note of any significant differences in ParaMagic for Mac users

hereafter.

Figure 2.2 New Project window Figure 2.3 Creating Package in Data folder

Step II Create Infrastructure

5. Install ParaMagic Profile module

a. On MagicDraw menu bar, select File→Use Module… and select as below (Figure 2.4).

This loads a module containing all the ParaMagic features as part of the project.

i. Click Next and Finish (Figure 2.5).

Figure 2.4 Use Module window

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 11

Figure 2.5 Module settings for ParaMagic Profile

Step III Create Structural Model

6. Create elements in model

a. RC (Right-click) Addition package in Containment window
i. Select New Element→SysML Blocks→Block

1. Enter Name = Alpha in blank text box
b. RC Addition

i. Select New Element→SysML Blocks→Block
1. Name = Beta

c. RC Addition
i. Select New Element→SysML Blocks→Block

1. Name = Gamma
d. RC Alpha

i. Select New Element→SysML Properties→Value Property
1. Name = A
2. To set the Type of the property, DC (double click) on A and enter Real in

the Value Property window (Fig. 1.6) or select Real from dropdown list
e. RC Beta

i. Select New Element→SysML Properties→Value Property
1. Name = B
2. Type = Real

f. RC Gamma
i. Select New Element→SysML Properties→Value Property

1. Name = C
2. Type = Real

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 12

Figure 2.6 Value Property window, enter Type

7. Create a block definition diagram, a graphical view of the entire system

a. RC Addition

b. Select New Diagram→SysML Diagrams→SysML Block Definition Diagram

i. Name = AdditionBDD

c. Drag Alpha, Beta, and Gamma from Containment window into AdditionBDD (Figure 2.7)

i. To rearrange position, drag using top half of block.

ii. To resize block, click on top half of block and use cursors at corners

iii. If attributes (e.g. B) are not listed inside the blocks, display the attributes by,

1. RC on block,

2. choose Presentation Options,

3. uncheck Suppress Attributes.

Alternatives: To show or hide the interior features of a block, right-click on the
block and use the Symbol Properties, Edit Compartment and Presentation Options
commands. Alternately, click on the block and look for small plus and minus icons
on the left edge to display or suppress interior features.

8. Create relationships between elements of the model. Alpha and Beta can be used as parts of

Gamma.

a. Click on Gamma in the Block Definition Diagram

b. Select Directed Composition arrow from floating toolbar (arrow with solid diamond at

base).

c. Drag end of arrow to Alpha

d. Repeat steps a-c for Beta (Figure 2.8)

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 13

e. This procedure causes blocks Alpha and Beta to be used as Part Properties inside Gamma.
Under the Gamma block in the Containment window, assign these Part Properties the
names alp and bet, respectively.

Figure 2.7 Block Definition Diagram Figure 2.8 Block Definition Diagram with Floating

Toolbar and Directed Composition Arrows

Step IV Create Constraints

9. Create a constraint block, which contains a mathematical relationship that the model will use.

a. RC Addition package in the Containment tree.

i. Select New Element→SysML Blocks→Constraint Block

1. Name = AdditionEqn

b. RC the AdditionEqn constraint block

i. Select New Element→Constraint Parameter

1. Name = a

2. Type (of a) = Real

c. RC AdditionEqn

i. Select New Element→Constraint Parameter

1. Name = b

2. Type = Real

d. RC AdditionEqn

i. Select New Element→Constraint Parameter

1. Name = c

2. Type = Real

e. DC (double-click) AdditionEqn

i. In the window labeled Constraint Block – AdditionEqn (Figure 2.9),

1. select Constraints, click Create

2. under Name, enter sum

3. under Specification, enter c = a + b (putting a space between each

parameter and operation is optional, but enhances readability).

4. click Close.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 14

Figure 2.9 Constraint Block window showing Constraint

Step V Create Parametrics Model

10. Create a SysML Parametric diagram to define and display the relationships

inside Gamma

a. RC the Gamma block in the Containment tree.

b. Select New Diagram→ SysML Parametric Diagram

i. The Select Parts window will appear. Select Enter, and all the

value properties and part properties of Gamma will appear

automatically on the diagram.

ii. The default diagram name is Gamma.

c. Drag the Constraint Block AdditionEqn into the Gamma parametric diagram.

i. AdditionEqn will appear inside Gamma (in the Containment tree and in the

parametric diagram) as a Constraint Property of the type AdditionEqn. Assign it

a unique name, add.

ii. Use the Display Parameters icon (Figure 2.10) and Select Parameters window

(Figure 2.11) to show parameters a, b and c.

iii. Arrange them at top of block as shown in Figure 2.13.

d. Display the internal structure of alp:Alpha by

i. RC on alp:Alpha

ii. Select Edit Compartment→Structure from list

iii. Select A from the Edit Compartment window (Figure 2.12)

iv. Move it to the right side of window using central arrow or double arrow buttons

v. Click OK

vi. Repeat step i.-vi. for B in bet:Beta

Note: In general, Edit Compartment and Presentation Options provide control in displaying
or hiding properties inside blocks, but displaying ports or parameters inside constraint
blocks and constraint properties uses the floating toolbar icons like in Figure 2.10.

Figure 2.10

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 15

Figure 2.11 Select

Parameters window

Figure 2.12 Edit Compartment window

e. The parametric diagram at this stage should appear something like Figure 2.13.

Figure 2.13 Parametric Diagram before Connectors added

f. Create the connections between the model attributes (A, B, and C) and the constraint

parameters (a, b, and c).

i. Click on parameter a in the add:AdditionEqn constraint property in the Gamma

diagram..

ii. From the floating toolbar that appears, choose the Connector icon (simple

straight line, see highlight in Figure 2.14) and drag the end to A in the part

property alp:Alpha. If the connection is yellow, then the parameter may be

incorrectly linked to the outer rectagle, alp:Alpha, instead of the value property,

A:Real.

iii. Repeat steps i. and ii. for b to B and c to C connectors.

iv. At this stage, the parametric diagram should look like Figure 2.14 and the

Containment tree should look like Figure 2.15.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 16

Figure 2.14 SysML Parametrics Diagram with connectors, connector icon highlighted

Step VI Validate Parametrics Model

11. To validate the model schema,

a. Right-click on block Gamma in the

Containment tree

i. select ParaMagic→Validate

b. If the message reads “SysML block

structure is valid. Warning: schema

structure validation does not check for

equation over-constraints, etc. –See

Users Guide Limitations”, go on to

Step VII. Otherwise, correct model

errors, which will be specified in the

message window at the bottom of the

screen, and repeat validation.

c. A Message window will appear with a

listing of parametric model statistics.

Note: Validation is applied to Gamma, the “root block” of

our parametric model. The root block is the highest level in the model structure; validation is applied to

the root block and all its part properties.

Step VII Create an Instance

12. Create an instance. An instance is an example of the model with specific values assigned to the

given parameters and which can be solved for the unknown(s).

a. RC the Addition package in the Containment tree

i. Create New Element → Package

1. Name = AdditionInstance01

Figure 2.15 Containment Tree

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 17

b. RC AdditionInstance01

i. Create New Diagram →SysML Diagrams →SysML Block Definition Diagram

1. Name = Instance01

Figure 2.16 Creating an instance of Alpha inside AdditionInstance01

c. Click on Instance from the central toolbar (highlighted in Figure 2.16) and click inside

the diagram to draw an Instance block.

i. Select Alpha on the Tree tab, Select Classifier window, and press OK.

ii. DC the :Alpha block on Instance01 and name it alpha01.

Alternative: In the next tutorial, we introduce the “Create Instances” utility to expedite

the process of creating an instance from each block in the schema.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 18

Figure 2.17 Instance Specification Figure 2.18 Instance diagram, preliminary

d. Repeat process in step c to create instances beta01:Beta and gamma01:Gamma.

Instance diagram should appear similar to Figure 2.18.

e. Click gamma01 and select link (top solid line with small L) on floating toolbar.

f. Draw the link from gamma01 to alpha01

i. On the Select Association window, check the box by the association and click

OK. See Figure 2.19.

ii. On the Create Slots window, check alp:Alpha and click OK (Figure 2.20).

g. Repeat steps e and f for a link from gamma01 to beta01. See diagram in Figure 2.21.

Figure 2.19 Select Association window Figure 2.20 Create Slots window

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 19

Figure 2.21 Instance diagram, preliminary Figure 2.22 Setting value for A in Instance01

13. Add values to the instance and define inputs and outputs. Review Section 1.3 on causality.

a. Add a value to A for to be used in solving the instance.

i. Double-click on alpha01,

ii. click on Slots,

iii. click on A =”” in central Instance Specification window (Figure 2.22),

iv. enter “10” as value on right side of window.

v. Expand Slots (click on + box next to Slots),

vi. expand A=””,

vii. select Tags (see Figure 2.23).

viii. DC on <<causality>> type.

ix. Select given from dropdown list and Close.

b. Repeat step a for beta01, specifying “20” as value and given as causality.

c. Repeat step a for gamma01, but do not specify a value, and for <<causality>>, select

target. Final instance diagram should appear similar to Figure 2.24.

Alternative: In the next tutorial, we assign causality directly in the ParaMagic browser.

Figure 2.23 Instance diagram, preliminary Figure 2.24 Instance diagram, final

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 20

Step VIII Solve the Instance

14. Run the parametric solver

a. RC gamma01 (instance of the root block) in the Containment tree.

b. Select ParaMagic→Browse. Expand the alp and bet part properties in the browser

(click the + sign beside them) and it should appear as in Figure 2.25.

Figure 2.25 ParaMagic Browser window

c. Press “Solve”

i. The ????? symbols in the target variables should change to their calculated

values, in this case C = 30 (Figure 2.26).

d. Press “Update to SysML”. C=30 should appear in the Containment tree and Instance

diagram.

Figure 2.26 Browser window with solution

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 21

 3 SYSML PARAMETRICS TUTORIAL - SATELLITE

3.1 Objective

 Create a SysML project comprising a satellite system composed of four subsystems: Propulsion,

Instrumentation, Control and PowerSystem. Each subsystem has a weight and there is a total weight

budget for the satellite of 10,000 kilograms. The Propulsion, Instrumentation, and Control subsystems

each draw electrical power from the PowerSystem, which can supply a maximum of 10 megawatts. Given

the weights of all four subsystems and the power requirements of three, calculate the total weight and

power demand for the system and compare against requirements.

Figure 3.1 Outline of Objective

 What the User Will Learn

 Apply SysML parametrics to a realistic system with subsystems

 Working with multiple constraints

 Working with requirements

 Working with ValueTypes

 Changing causality – reversing the direction of calculation

3.2 Step-by-Step Tutorial

 Step I Create Project

1. Create new SysML project

a. Name = Satellite

2. Create a package within the project

a. RC (Right-click) on Data folder in Containment tree (left column)

b. Choose New Element→Package

c. Enter Name = Satellite

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 22

Step II Create Infrastructure

3. Install ParaMagic Profile module, same as in the first tutorial.

Step III Create Structural Model

4. Create elements in model

a. RC on Satellite

i. Create New Element→Package

1. Name = ValueTypes

ii. RC on ValueTypes, create New Element→SysML Values→ ValueType

1. Name = Kilowatt

2. Base Classifier = Real

a. DC on Kilowatt in Containment tree

b. In Value Type – Kilowatt window click to the right of Base

Classifier row in table

c. Click on button with three dots

d. In Select Elements window, enter Real in Search by name

text box

e. Select Real (SysML Profile::Blocks)

f. Click OK and Close.

iii. RC on ValueTypes, create New Element→SysML Values→ ValueType

1. Name = Kilogram

2. Base Classifier = Real

b. RC Satellite

i. Create New Element→SysML Blocks→Block

1. Name = SatelliteSystem

ii. In SatelliteSystem, create three new value properties

1. Name = Weight, Type = Kilogram

2. Name = Weight_MOS, Type = Real

3. Name = Power_MOS,

4. Type = Real

Discussion – ValueTypes, Units, and Dimensions

We frequently want to apply units to a value property, for example, electrical power in our model

will be expressed in kilowatts. We do this by assigning a ValueType to the value property. We can

use the Type property to make this assignment. We create two new ValueTypes in step 4.a above,

Kilograms and Kilowatts. ParaMagic expects valuetypes used for parameters to be subtypes of the

Real valuetype, so we use the Base Classifier entry to make this assignment (alternatively, the

quantityKind field can be populated, see ParaMagic User Guide).

Assigning valuetypes to properties makes the model more exact and helps identify mismatches

when block properties and constraint parameters are linked in parametric diagrams. Note that units

are not assigned to value properties directly, so the Kilogram unit in the MD SysML profile is not

used in step 4.b.ii.1 above. The full description of the relationship between ValueTypes, Units and

Dimensions is described in the MagicDraw User Guide.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 23

c. RC on Satellite

i. Create New Element→SysML Blocks→Block

1. Name = Propulsion

ii. In Propulsion, create two new block properties

1. Name = Wpro, Type = Kilogram

2. Name = Ppro, Type = Kilowatt

d. Repeat step b. for Instrumentation, Control, and PowerSystem subsystems with

attribute names as shown in Figure 3.2

e. RC on Satellite

i. Create New Diagram→SysML Diagrams→SysML Block Definition Diagram

ii. Name the diagram SatelliteBDD.

iii. Drag SatelliteSystem, Propulsion, Instrumentation, Control and

PowerSystem from the Containment tree into the diagram and arrange

f. Click on SatelliteSystem in the diagram, choose a Directed Composition arrow from

the floating toolbar, and drag the arrow to Propulsion.

g. Name part property Pro1.

h. Repeat steps f. and g. for Instrumentation, Control, and PowerSystem subsystems

as shown in Figure 3.2.

Figure 3.2 SysML Block Definition Diagram

Step IV Create Constraints

5. Inside Containment tree window, create two constraint blocks, which contains a

mathematical relationship that the model will use for weight and power calculation

a. RC Satellite, select New Element→SysML Blocks→Constraint Block, Name =

WeightBalance

b. RC WeightBalance, create New Element→Constraint Parameter

i. Name = w, Type = Kilogram

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 24

c. Copy w, paste four times inside WeightBalance and rename to create parameters

w1, w2, w3 and w4.

d. DC (double-click) WeightBalance

i. In the window labeled Constraint Block

1. select Constraints

2. click Create

3. under Name, enter weightbalance

4. under Specification, enter w = w1 + w2 + w3 + w4

5. click Close

e. Create a second constraint block, name = PowerBalance, with four constraint

parameters (p, p1, p2, p3), Type = Kilowatt, and one constraint, name =

powerdemand, specification = p = p1 + p2 + p3, using the same process as steps as

a.-d.

f. Drag both new constraint blocks into the SatelliteBDD block definition diagram,

which will appear similar to Figure 3.3.

Figure 3.3 SysML Block Definition Diagram with Constraints

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 25

6. Create a Requirements diagram to show the specifications for the Satellite system. The

purpose of a Requirements diagram is to make clear the requirements the system must

meet and how these requirements tie to specific values of the model. For our purpose, we

can pair each Requirement with a Constraint Block that mirrors it, making it easy to

automatically verify the constraint when ParaMagic is executed.

a. RC on Satellite, create New Element→Package, Name = SatelliteReqts

b. RC on SatelliteReqts, create New Diagram→SysML Diagrams→SysML Requirements

Diagram, Name = SatelliteReqts

c. Drag two requirements blocks from the center toolbar into the diagram

i. Name = WeightReqt, id = 1.0.1, text = Total system weight must be less than

10,000 kilograms

ii. Name = PowerReqt, id = 2.0.1, text = Total system power use must be

less than 10,000 kilowatts

d. RC on SatelliteReqts, create New Element→SysML Blocks→Constraint Block

i. Name = WeightMOS (Margin of Safety)

e. RC on WeightMOS (in containment tree),

i. Create a New Element→Constraint Parameter, Name = mos, Type = Real

ii. Create a New Element→Constraint Parameter, Name = actual, Type =

Kilogram

iii. Create a constraint, Name = wtmos, Specification = mos = (10000 -

actual)/10000. This constraint calculates the margin of safety as the

difference between the target value, 10,000 kg, and the actual weight as

calculated, divided by the target value. It will be positive if system weight is

below the target value, negative if it exceeds the target.

f. Repeat step e. for PowerMOS (see Figure 3.4 for specifics)

g. Drag PowerMOS and WeightMOS into the Requirements diagram

h. Use the Verify arrow (central toolbar) to show the relationship between each

Constraint Block and the Requirement it verifies.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 26

Figure 3.4 SysML Requirements Diagram

Step V Create Parametrics Model

7. Create a SysML Parametric diagram to define and display the relationships inside

SatelliteSystem

a. RC SatelliteSystem

b. Create New Diagram→SysML Parametric Diagram, Name = SatelliteSystem

c. Use the Select Parts window to select the Weight Value Property and four Part

Properties inside SatelliteSystem. Uncheck Value Properties: Weight_MOS and

Power_MOS as they will be used in the second Parametric Diagram.

i. Use the Edit Compartment and Presentation Options commands to display

the internal structure as shown in Figure 3.5

d. Drag a constraint property icon from the central toolbar into the parametric

diagram

i. In Select/Create Part for Type window, choose WeightBalance

ii. Name the constraint property weight1.

iii. Click on weight1 and select the Display Parameters icon from the floating

toolbar (see Figure 2.10). Click OK on Select Parameters window.

iv. Rearrange port icons inside weight1 as shown in Figure 3.5.

e. Repeat step d for a Constraint Property of the type of PowerBalance.

f. Add connectors (central toolbar or floating toolbar) from the Value or Part Property

attributes to the Constraint Property parameters as shown in Figure 3.5.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 27

Figure 3.5 SysML Parametrics Diagram

8. Create a second SysML Parametric diagram to define and display the calculation of the

requirements verification relationships inside SatelliteSpecfication

a. RC SatelliteSystem

b. Create New Diagram→ SysML Parametric Diagram, Name = SatelliteVerify

c. Use the Select Parts Window to allow only the Part Property, Psy1, and the Value

Properties: Weight, Weight_MOS, and Power_MOS, to appear in the parametric

diagram.

d. Use Edit Compartment to show the Value property, Power, inside Psy1.

e. Drag the WeightMOS constraint block inside the diagram and give it the name

WMOS as a constraint property of SatelliteSystem. Display the constraint

parameters and arrange as shown in Figure 3.6.

f. Repeat for the PowerMOS constraint block.

g. Add connectors from the Value or Part Property attributes to the Constraint

Property parameters as shown in Figure 3.6.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 28

Figure 3.6 SysML Parametrics Diagram

Step VI Validate Parametrics Model

9. To validate the model schema, RC on SatelliteSystem, the root block, in the Containment

tree and select ParaMagic→Validate.

Step VII Create an Instance

10. Create an instance by creating a new block definition diagram containing the model, the

elements whose attributes are givens or unknowns in the calculation. In the first tutorial,

we created the diagrams and instances individually. In this example, we use the

Instantiation Wizard, which can create complex instances more efficiently, particularly

where there are many elements.

a. RC on SatelliteSystem (the root block) and select Create Instance…

i. The Automatic Instantiation Wizard is launched as in Figure 3.7a.

Note: The shortcuts taught in this tutorial, including Create Instances… (step 10) and entering the values

and causalities directly into the ParaMagic browser (step 11) can be quicker than the manual entry

methods shown in the first tutorial. ParaMagic has the ability to create instances and set values directly

from Excel spreadsheets (see the Orbital tutorial for an example), which can be even quicker for more

complex models.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 29

Figure 3.7a Automatic Instance Generation, Part 1

ii. Click Next.

iii. Click Create and create the Instance_01 package in the Satellite package

(see Figure 3.7b)

iv. Click Next.

Figure 3.7b Automatic Instance Generation, Part 2

Figure 3.7c Automatic Instance Generation, Part 3

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 30

v. Click the “Create a new diagram” checkbox (see Figure 3.7c).

vi. Diagram name = Instance_01, Type = SysML Block Definition Diagram.

vii. Click Finish.

b. The diagram Instance_01 looks similar to Figure 3.8

Step VIII Solve the Instance

11. Assign causality and value to all variables.

In this example, we will enter these using

ParaMagic and the browser, rather than

directly into the instances as taught in the

first tutorial.

a. RC on satelliteSystem:Satellite

System (the root instance).

i. Select ParaMagic→Browse.

ii. A message as shown in

Figure 3.9 will appear. This

indicates that no causalities

have been assigned.

iii. Click Reassign. This assigns

undefined casuality to

variables without values

and given causality to

variables with starting

values. At this stage, no

variables have been

assigned a value. The

ParaMagic browser appears

as in Figure 3.10

Figure 3.9 ParaMagic Browser for Instance_01, before solution

b. Assign a given value of 5000 (Kilowatts) to Ppro.

i. Click on the causality assigned to Ppro , initially undefined.

ii. On the pulldown menu that appears, change Ppro’s causality to given.

iii. “InputValue!” appears in the Values column. Change it to 5000.

c. Repeat step c. for all the variables as shown in Figure 3.11. Note that Power_MOS

and Weight_MOS are reassigned to target causality.

Figure 3.8 Satellite Instance_01 Diagram,
after wizard

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 31

Figure 3.10 ParaMagic Browser for Instance_01, before solution

Figure 3.11 ParaMagic Browser for Instance_01, before solution

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 32

12. Solve the parametric model.

a. Press “Solve”. The ????? symbols in the target variables should change to their

calculated values.

i. The results in Figure 3.12 show positive values of Weight_MOS and

Power_MOS. In other words, both requirements have been successfully

met with positives margins of safety.

ii. After solution, parameters that began with undefined causality now have

calculated values and ancillary causality. Slots for which no values were

calculated remain as undefined. This may be caused by an error in building

the parametric model, by a failure of Mathematica to solve the parametric

equations, or by these slots not being in the path required to calculate the

target values.

b. Press “Update to SysML”. Then you should see the new calculated values in the

Instance diagram.

Figure 3.12 ParaMagic Browser for Instance_01, after solution

13. It is possible to manipulate the values inside the browser window to repeat the calculation with
a new set of given values, or even change the choice of given and target values. Selecting the
Causality type for a parameter in the Browser opens a pull-down list with three choices: given,
undefined, and target.

a. To change a given value, click on that value in the browser window and edit. This
will reset the solution.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 33

b. To change a target or undefined value to a given, or a given value to target or
undefined, change the causality for that parameter. In Figure 3.12, the problem has
been inverted.
“Given the weight budget (10,000 kg) and power budget (10,000 kW) and the
properties of the other subsystems, how much weight and power can be allocated
to the Instruments subsystem?”. In this example, we set the margins of safety equal
to zero and calculate Wins and Pins as targets.

Figure 3.13 ParaMagic Browser for Instance_01, before solution, with changes in causality

Discussion – Causality
Mathematica is an “acausal” solver, that is, it can solve many equations in any direction. The user

can take advantage of this to use the same model to answer different kinds of questions. However, not
all solvers are acausal (e.g. Microsoft Excel formulas work in one direction only) and not all functions
work in multiple directions (e.g. A = MINIMUM(B,C,D) cannot always be solved uniquely for D given A, B
and C). Keeping track of causality can require some effort on the part of the modeler.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 34

 4 SYSML PARAMETRICS TUTORIAL - LITTLEEYE

4.1 Objective

The third tutorial concerns using SysML to determine operational performance using a sequence of

equations. The system is the LittleEye unmanned aerial vehicle (UAV) which is used to provide

reconnaissance. The objective is to calculate how many miles of road can be scanned per 24 hours,

which will be determined by the number and duty cycle of aircraft, the number and duty cycle of

crews, and the availability of fuel.

Figure 4.1 Outline of Objective

The complexity of the model, with six elements, eight constraints and more than twenty parameters,

makes it a good place to introduce “object-oriented” modeling techniques, which allow a complex model

to be built from simple, independent and potentially reusable subsystems, tied together only at the highest

levels

 What the User Will Learn

 Applying an “object-oriented” approach to SysML parametrics

 Embedding constraints and parametric diagrams within multiple blocks in the model

 Using standard functions, e.g. Minimum

 Using simulation to explore a model with “what-if scenarios”

.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 35

4.2 Step-by-Step Tutorial

 Step I Create Project

1. Create new SysML project, Name = LittleEye
2. Create new Package, Name = LittleEye

Step II Create Infrastructure

3. Install ParaMagic Profile module, same as in the Addition tutorial.

Step III Create Structural Model

4. Create a Block Definition Diagram containing the four structural elements with attributes as

shown in Figure 4.2

Figure 4.2 Structural Elements in Block Definition Diagram LittleEyeBDD

a. Create the Directed Composition arrows as demonstrated, to show that aircraft, crew and

fuel are parts of the system.

b. Name the Part Properties created inside LittleEyeSystem by the Directed Composition

arrows (LittleAircraft , LittleCrew, and LittleFuel in this example).

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 36

Step IV Create Constraints

5. Inside the LittleEye package, create eight constraint blocks, which contain the eight

mathematical relationships appearing in Figure 4.1, using the procedure described in the

earlier tutorials. Figure 4.3 shows the eight constraint blocks displayed on the right side of

the LittleEye Block Definition Diagram. The parameter list has been hidden for the

constraint blocks by selecting Presentation Options→Suppress Parameters, Operations,

Attributes on each block.

Figure 4.3 Block Definition Diagram with Constraints and Model added

Step V Create Parametrics Model

6. Using an “object-oriented” programming approach, the four elements of Figure 4.2 will be

converted into independent submodels containing internal constraints and relationships.

Each sub-model could be modified without damaging the larger system model. It could also

be copied and reused in a different project.

a. The submodel LittleEyeSystem will contain the six values listed in Figure 4.3 plus

two constraints that connect them, the Scanning Equation and the System

Availability Equation at the top right of Figure 4.2. See Figure 4.4.

i. In the Containment window, drag ScanningEqn and SystemAvailabilityEqn

inside the LittleEyeSystem block.

ii. In LittleEyeSystem, create a New Diagram→SysML Parametrics Diagram,

name = LittleEyeSystem

iii. Use the Select Parts window to choose the six Value Properties inside

LittleEyeSystem to appear on parametrics diagram.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 37

iv. Create a new Constraint Property by dragging the Constraint Block

ScanningEqn into the parametrics diagram, Name = SE. Use the Display

Parameters icon to show nms, msph, and nas inside SE.

v. Repeat step iv. for a second constraint property, name = SAE, Type =

SystemAvailabilityEqn.

vi. Using connectors, wire the value properties and constraint parameters as

shown in Figure 4.4.

Figure 4.4 LittleEyeModel Parametrics Diagram

b. Create submodels for the Aircraft, Crew, and Fuel blocks using the same

procedures, ending with the parametrics diagrams shown in Figures 4.5, 4.6 and

4.7

Figure 4.5 LittleEyeCrew Parametrics Diagram Figure 4.6 LittleEyeFuel Parametrics Diagram

 Discussion: Adding Constraint Properties to Parametric Diagrams
In the first three tutorials, we have used slightly different methods to incorporate constraints

into parametric diagrams. In the first, we dragged the Constraint Block from the Containment tree
into the parametric diagram, creating a Constraint Property of the same type. In the second, we
dragged a constraint property icon from the toolbar into the parametric diagram and used the
Select Classifier window to identify it with an existing Constraint Block. In this example, we placed
the Constraint Blocks inside the submodel blocks, before dragging them into the parametric
diagrams to create individual Constraint Properties of the same type. In each case, we have had to

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 38

assign the Constraint Property created a unique name.
All three methods work. The third implies an exclusive ownership of the constraint by a

particular submodel, which may be misleading if the constraint block is to be re-used by other parts
of model. Assigning ownership may be useful in a collaborative environment, but it is also OK to
keep Constraint Blocks anywhere in the project, e.g. in a Constraints library, and drag them into
specific parametric diagrams as needed.

Figure 4.7 LittleEyeAircraft Parametrics Diagram

7. It is also necessary to create an overall parametric diagram to connect the different

submodels. This is an objective of “object-oriented” programming, to create independent

modules and link them in the simplest possible way. Within the top-level block, LittleEye

System, several properties have been created with the same names as properties in the

lower-level models, e.g. NumberAvailablePlanes. In the following steps, we use connectors

to link models together through these duplicate parameters. (Alternate: the duplicate

parameters could also be linked using explicit equality constraint relationships, created as

an Equality constraint block in Step 8 and used three times within this parametric diagram.

However, this involves a lot of extra work. ParaMagic interprets direct connections between

value properties as equality relationships).

a. Create a second SysML Parametrics diagram inside LittleEyeSystem called

LittleEyeSystem_2.

b. Use the Select Parts window to select the Part Properties LittleAircraft, LittleCrew

and LittleFuel, to appear in the parametrics diagram.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 39

c. Drag the three value properties of LittleEyeSystem: NumberAvailablePlanes,

NumberAvailableCrews and NumberAvailableFuelLoads into the parametric

diagram.

d. Using Edit Compartment and Presentation Options, display the internal structure of

the three submodels as shown in Figure 4.8. Note that only the parameters

necessary for wiring between the high-level model and the submodels are shown;

all other parameters can remain hidden.

e. Draw connectors between model properties as shown in Figure 4.8.

Figure 4.8 LittleEyeSystem_2 Parametric Diagram

Step VI Validate Parametrics Model

8. To validate the model schema,

a. RC on LittleEyeSystem, the root block, and select ParaMagic→Validate.

Step VII Create an Instance

9. Create an instance of the model. The steps are similar to previous tutorials, however, some

short-cuts are used. For example, the values of the given are assigned in step d below and

most causality tags are set automatically using the “Assign default causalities” utility in step

f. Figure 4.9 is an example of an instance. The values for several of the givens are taken

from Figure 4.1. Others, such as the NumberPlanes, are user-set trial values, which will be

varied during the solving operation.

a. Create a package called LittleEyeInstance01 inside the LittleEye package.

b. Create a block definition diagram for the instance.

c. Create instances of System01, Aircraft01, Crew01 and Fuel01.

d. To display parameters inside each instance, DC on the instance, select Slots, DC on

each parameter to be displayed, assign a value if the parameter is a given, and

close the window when all parameters in that instance are complete.

i. When inputting decimal values less than one, it is necessary to use the

notation 0.42 instead of .42 or the ParaMagic browser window will not

open.

e. Link the Aircraft01, Fuel01 and Crew01 blocks to System01 block using the Link

connector on the floating toolbar (click on the block to see toolbar).

f. Assign causalities.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 40

i. Right-click LittleEyeInstance01.

ii. Select ParaMagic→Util→Assign default causalities. All parameters that have

been assigned a numerical value are now assigned as givens. All parameters

that were assigned an empty value are now assigned as undefined (to be

calculated by the solver). This same function is carried out automatically

when the browser is opened if causalities are not already assigned.

iii. Assign NumberMilesScannedPer24Hours target causality in this example.

iv. RC System01 in the Containment tree and select ParaMagic→Util→Set

default instance. This identifies the root instance within the LittleEye

Instance01 package and allows the parametric model to be browsed from

either the root instance or the package.

Figure 4.9 Creating an Instance of the LittleEye model

Step VIII Solve the Instance

 The trial parameters appear in the browser window as shown in Figure 4.10. After solution, the
results are shown in Figure 4.11. The target result, NumberMilesScannedPer24Hours, is 2, 016 miles.
Note that the number of available systems is 2.1, on average, and is limited by the number of available
crews. The number of available aircraft, 2.4, and fuel loads, 5, are not the limiting factors in keeping
UAVs in the air.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 41

In Figure 4.11, several parameters are labeled “ancillary” after solution. This implies that they were

calculated during the solution process, and were used in further calculations. For example, the number
of available crews was calculated from the number of crews and the crew duty cycle, and is used in
calculating the number of available systems.

Figure 4.10 Browser for First Instance of the LittleEye model, before Solution

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 42

Figure 4.11 Browser for First Instance of the LittleEye model, after solution

In Figure 4.12, the number of crews assigned to the base is increased by one, from 5 to 6. After
solution, the average number of available systems has increased to 2.4, now limited by the number of
available planes, and the number of miles scanned per 24 hours has increased to 2307. Increasing the
number of crews by 20% has increased the number of miles scanned by only 14% because a different
resource became the limiting factor. Further experimentation would show how the numbers of planes,
day cameras, and night cameras affects total miles scanned.

In some cases, the user will want to create and save multiple instances to record the effect of
changing input variables. One way to do this is to make multiple copies of the original instance within
the model and modify each one as desired, with a different set of input parameters, for example. The
tutorial in Chapter 8 presents a different approach, using MS Excel to organize a trade study between
parameter sets.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 43

Figure 4.12 Browser for Second Instance of the LittleEye model, NumberCrews increased by one, after
solution

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 44

 5 SYSML PARAMETRICS TUTORIAL - COMMNETWORK

5.1 Objective

The fourth tutorial uses SysML to simulate a simple communication network. The objective is to

calculate the output of the network given the input and the loss in the individual channels between

stations..

Figure 5.1 Outline of Network

The focus of this tutorial is working with limited number of standard elements to build up more complex

structures. In this example, there are only two standard elements, stations (nodes) and channels. Each

element contains constraint relations describing its behavior. An Internal Block Diagram is created to

assist in completing the parametric diagrams correctly. Parametric constraints are also used at a higher

level to define interactions between elements.

What the User Will Learn

 Building complex structures from multiple usages of simple structures

 Using internal block diagrams

5.2 Step-by-Step Tutorial

 Step I Create Project

1. Create new SysML project and Package, Name = CommNetwork

Step II Create Infrastructure

2. Install ParaMagic Profile module, same as in first tutorial.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 45

Step III Create Structural Model

3. Create three blocks: Network, Node and Channel.

a. Network will be the top level (root) block, but contains no value properties.

b. Node represents a station which can receive and transmit messages. It has two inputs,

two outputs, and the ability to redistribute the message traffic depending on the

capacity of the transmission channels. To build the node model, we will use flowports,

value properties and parametric diagrams.

i. Create a Flow Specification, Name = Signal, inside the CommNetwork package.

ii. Each node has four flowports, two for receiving message traffic and two for

transmitting (see Figure 5.2). To create a flowport

1. RC on Node, create New Element→Port

2. Double-click on the new port, Name = Rec1, AppliedStereotype =

Flowport, Direction = in, Type = Signal.

3. Repeat for other three flowports. Note that Direction is out for Tr1 and

Tr2.

Figure 5.2 Node with Ports Figure 5.3 Select Applied Stereotype as Flowport

iii. The Node block has nine Value Properties, all Real. Six represent levels of

message traffic at input and output, units unspecified: R1, R2, R, T1, T2, and T.

Two represent the capacities of the upstream channels: C1 and C2. The final

attribute, D, represents the redistribution factor in splitting outgoing message

traffic between the Tr1 and Tr2 ports.

c. Channel represents a two-way communication link between two stations. The

throughput of each line, the output signal divided by the input, is a function of the

channel capacity C and the total signal traffic level. It has two inputs and two outputs,

but may use only one I/O pair in a particular instance. To build the channel model, we

will use flowports, value properties and parametric diagrams.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 46

i. Each channel has four flowports, two for input message traffic and two for

output (see Channel blocks in Figure 5.6). To create a flowport

1. RC on Channel, create New Element→Port

2. Double-click on the new port, Name = In1, AppliedStereotype =

Flowport, Direction = in, Type = Signal.

3. Repeat for other three flowports. Note that Direction is out for Out1

and Out2.

ii. The Channel block has six Value Properties, all Real. Five represent levels of

message traffic at input and output, units unspecified: IT1, IT2, IT, 0T1, and 0T2.

C represents the intrinsic capacity of the channel.

4. Create a Block Definition Diagram and an Internal Block Diagram

a. RC on CommNetwork package, create New Diagram→SysML Diagrams→SysML Block

Definition Diagram, Name = Network_BDD

i. Drag Network, Node and Channel blocks into the diagram

ii. Using the Direct Composition connector from the floating toolbar, connect as

shown in Figure 5.4. Note that four connections are made from Network to a

single Node block, and the resulting four Part Properties are named N1, N2, N3

and N4. Similarly, five connections are made from Network to a single Channel

block, named as ChA thru ChE.

Figure 5.4 CommNetwork Block Definition Diagram

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 47

b. RC on Network block in Containment tree, create New Diagram→SysML

Diagrams→SysML Internal Block Diagram, Name = Network.

i. Drag all nine part properties in Network (four node and five channels) into the

diagram and arrange as shown in Figure 5.6.

ii. Click on each block and use the Display Ports icon on the floating toolbar (Figure

5.5a) to show the ports. Arrange the ports as shown in Figure 5.6.

iii. Click on a port and use the Connector icon on the floating toolbar (Figure 5.5b)

to create a connector, which can be dragged to the matching port on another

block. Arrange the connectors as shown in Figure 5.6.

Figure 5.5a Display Ports icon Figure 5.5b Connector icon

Figure 5.6 CommNetwork Internal Block Diagram

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 48

Step IV Create Constraints

5. Create the five constraint blocks required by the model: ErrorRate, Fraction, Product, Product1

and Sum. Usage of these constraint blocks are shown in the parametric diagrams in Figure 5.7

and 5.8, which show the constraints and constraint parameters for each.

Step V Create Parametrics Model(s)

6. Create a parametric model for CommNetwork. There are standard relationships internal to

Node and Channel elements and there are equalities tying the Nodes and Channels together

into a network.

a. Create a parametrics diagram within the Node block, Name = Node. This diagram,

shown in Figure 5.7, contains four separate constraint properties, with the constraints

shown, the nine internal value properties, and the nested connectors tying them

together. In this example, the objective of the equations to redistribute the incoming

signal to the two outgoing channels, based on their relative capacities. No claim is made

about the realism of this model.

Figure 5.7 Node parametric diagram (flowports deleted from diagram)

b. Create a parametrics diagram within the Channel block, Name = Channel. This diagram,

shown in Figure 5.8, contains three constraint properties (including two usages of the

ErrorRate constraint), with the constraints shown, the six internal value properties, and

the nested connectors tying them together. In this example, the objective of the

equations to reduce the signal throughput at the output of each line relative to the

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 49

input by an exponential factor based on Capacity C and total incoming traffic. No claim

is made about the realism of this model.

Figure 5.8 Channel parametric diagram (flowports deleted from diagram)

c. Create parametric diagrams connecting the channels and nodes through equalities as in

Figure 5.9a-d. Use the internal block diagram in Figure 5.8 to keep track of which blocks

and ports connect. In this example, we have chosen to divide the entire set of high level

parametric relationships into four separate diagrams in order to keep each individual

diagram simpler with fewer elements. This illustrates the combined use of internal

block diagrams for a high-level qualitative perspective and narrower parametric

diagrams to make the actual quantitative connections.

Figure 5.9a Node 1 parametric

diagram (flowports deleted from

diagram)

Figure 5.9b Node 2 parametric diagram (flowports deleted from
diagram)

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 50

Figure 5.9c Node 4 parametric

diagram (flowports deleted from

diagram)

Figure 5.9d Node 3 parametric diagram (flowports deleted from

diagram)

Step VI Validate Parametrics Model

7. To validate the model schema, RC on the Network block and select ParaMagic→Validate.

Step VII Create an Instance

8. We will create an instance of CommNetwork using a library of standard instances, rather than

creating each instance individually.

a. Create a library of standard instances of system element.
i. RC on CommNetwork and select New Element→Package, Name =

InstanceLibrary
ii. RC on InstanceLibrary and select New Element→Instance Specification, Name =

StartNode, Classifier = Node
iii. Double-click on StartNode to open Instance Specification window (Figure

5.10a).

Figure 5.10a Instance Specification window Figure 5.10b Select Elements window

iv. Select Classifier and click Edit icon to open window in Figure 5.10b
v. Double-click on Node to set StartNode as an instance of Node and click OK.

vi. Click Slots in Instance Specification window (Figure 5.10a) and double-click on
each of the value properties to activate them. For the StartNode instance, we

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 51

assume a given input signal level by assigning R1 as 10 (arbitrary units) and R2
as 0. All the remaining slots are left empty. Click Close at the end.

vii. Repeat this process for four more standard instances:
1. ThruNode (stations which both receive from and transmit to other

stations in the network). All slots are activated, but left empty.
2. EndNode (stations which only receive, i.e. final destination). Assign C1

and C2 values = 1 or any non-zero fixed value because there are no
“downstream” channels to supply these values.

3. SingleChannel (channels in which only one I/O path is used). Classifier =
Channel. Assign C = 5 (capacity in arbitrary units) and IT2 = 0 because
input to second I/O path is not used.

4. DoubleChannel (channels in which both I/O paths are used). Classifier =
Channel. Assign C = 5 (capacity in arbitrary units).

viii. Assign causality to all standard instances by right-clicking on

InstanceLibrary and selecting ParaMagic→Util→Assign default

causalities.

ix. The final contents of InstanceLibrary should appear as in

Figure 5.11. Any of these instances can be dragged into an

instance diagram in another package and used without further

modification.

b. Create a specific instance package for the network proposed

i. RC on CommNetwork and select New Element→Package, Name = Instance01
ii. RC on Instance01 and select New Diagram→SysML Diagrams→SysML Block

Definition Diagram, Name = Instance01.

iii. We need four separate copies of SingleChannel in our

network, to represent Channels A, B, C, and D. In this example,

we will copy SingleChannel and paste four copies into

Instance01, named SingleChanne0, SingleChannel1,

SingleChannel2 and SingleChannel3.

iv. We need two separate copies of ThruNode in our network,

to represent Nodes 2 and 3. In this example, we will copy

ThruNode and paste two copies into Instance01, named

ThruNode0 and ThruNode1.

v. We need copies of DoubleChannel, StartNode and

EndNode in Instance01.

vi. Finally, create an instance of the Network block inside

Instance01, Name = Net0. The final contents of Instance01

should appear as in Figure 5.12

vii. Drag all the instances in Instance01 into the Instance01

diagram.

Figure 5.11 InstanceLibrary contents

Figure 5.12 Instance01 contents

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 52

viii. Using the connector icon on the floating toolbar, create link from Net0 to

StartNode0. A Select Association window appears, as in Figure 5.13. Check the

first line to assign the StartNode0 instance to the N1 part property.

ix. Draw connectors from Net0 to the remaining instances. In each case, assign an

appropriate instance to each part property, as shown in Figure 5.14.

x. Assign target causality to slot R in EndNode0.

xi. The final contents of Instance01 diagram should appear as in Figure 5.14.

Figure 5.13 Select Association window assigning StartNode0 instance to N1

Figure 5.14 Instance01 diagram complete

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 53

Discussion – Instance Generation
We have used four different methods for creating instance in our first four tutorials,

 Creating individual instances from the central toolbar

 Creating individual instances using menu commands

 Using the Instance Generation Wizard

 Copying and pasting existing instances from a standard instance library
Similarly, there are at least two ways of linking instances,

 Draw a link from the higher block to the lower and use the Select Association window to assign
the instance to an existing part property.

 Double-click on the higher block, click on Slots, double-click on a part property, and assign it to
an existing instance. In this approach, no visible line connects the instances on the instance
diagram, but the higher-level instance box displays the association, e.g. ChE = DoubleChannel0.

Which method to choose depends on the situation. Being familiar with multiple approaches is
advantageous.

Step VIII Solve the Instance

9. In Figures 5.15 and 5.16, only a few of the output variables are expanded to display. All of the

values are available, however.

Figure 5.15 Browser for Instance01 before solution Figure 5.16 Browser for Instance01 after solution

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 54

 6 SYSML PARAMETRICS TUTORIAL - ORBITAL

Note: ParaMagic Lite does not have the ability to call external Mathematica functions. The graphing

function in the Orbital model will not be executable without upgrading to the full ParaMagic feature set.

Standard ParaMagic users must set Mathematica as the core solver to access all program features.

6.1 Objective

 Create a SysML project combining an orbital mechanics subsystem and a spacecraft subsystem.

The orbital mechanics section is linked to a spreadsheet which calculated solar power levels and data

transmission levels for ten sections in the spacecraft’s orbit around Mars, based on the geometry between

the spacecraft, Mars, Earth and the Sun. See Figure 6.1. Note that the writer claims no expertise in this

field.

Figure 5.1 Outline of Objective

The spacecraft subsystem is tied to a second spreadsheet which contains the power and data transmission

requirements for the spacecraft by subsystems, three instrument packages, a transmitter, and a power

system. Information from both spreadsheets is combined at the Mission level using parametric

constraints solved by Mathematica and final results are written to a third spreadsheet.

What the User Will Learn

 Read and write between Microsoft Excel spreadsheets and MagicDraw SysML instance blocks

 Working with aggregates (parameters that can contain a list of values)

 Plotting aggregates with standard Mathematica functions

Aggregates are parameters with multiple values, for example, A = [A1, A2, A3, A4], and are

valuable in multiple ways. They can express vectors, time series, and other sets of numbers that will be

handled collectively or repetitively. In this tutorial, the individual elements of the aggregates represent

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 55

values for ten separate sections of the orbital cycle. The specific number of elements does not need to be

defined until the instance stage.

Mathematica has extensive graphics capability. Graphs can be created and saved during

ParaMagic execution, using several ParaMagic-provided standard functions. User-created Mathematica

functions, described in the ParaMagic Users Guide, provide even more flexibility.

Spreadsheets, such as Microsoft Excel, could be envisioned either as a means of loading data into

a specific instance from an existing table or database, a means of reporting and organizing results from a

parametric simulation, or a mathematical solver for parametric relationships that are part of the model.

Currently, ParaMagic only supports the first two functions.

System Requirements

 Microsoft Excel 2003 or 2007. Note: Excel is not required to execute the ParaMagic-Excel

interface. It is required to create, edit and view the spreadsheets used in the example.

 In order to use standard Mathematica functions that produce a graphics file, Mathematica must

be loaded on the user’s local machine or server (no web services) and the ICAX standard

function library must be installed for autoloading.

6.2 Step-by Step Tutorial

 Step I Create Project

1. Create new project

c. Name = Orbital

2. Create a package within the project

a. RC (Right-click) on Data folder in Containment tree (left column)

b. Choose New Element→Package

c. Enter Name = Orbital

Step II Create Infrastructure

3. Install ParaMagic Profile module, same as in the first tutorial.

Step III Create Structural Model

4. Create elements in model

a. Inside the Orbital package, create blocks called Mission, Orbital, Spacecraft,

InPkg1, InPkg2, InPkg3, Transmitter, and PowerSystem.

b. Create a block definition diagram, Name = Mission, and drag the Orbital elements

into the diagram. See Figure 6.2. Use Directed Composition connectors to link the

blocks in the hierarchy shown.

c. Inside Mission, create a value property called AveragePowerWindow and assign it

a Type as Real. Repeat this procedure for three additional properties in Mission:

AverageXmitWindow, EffectivePowerBudget, and EffectiveXmitBudget.

d. Referring to Figure 6.2, create value properties as shown in the Spacecraft, InPkg1,

InPkg2, InPkg3, Transmitter, and PowerSystem blocks, all type Real.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 56

e. Inside the Orbital block, create the value properties as shown in Figure 6.2.

i. Create Theta, Type = Real.

ii. Double click on Theta (in Containment tree or on block definition diagram) and

open the Value Property dialog box (see Fig. 6.3).

iii. Choose 1…* from the dropdown list next to Multiplicity. This allows the variable

Theta to contain any positive integer number of separate values.

iv. Repeat this procedure for PowerUsage and XmitUsage.

v. The Flag value property should not be created by users of ParaMagic 17.0.1 Lite,

which does not support Mathematica graphing functions.

Figure 6.2 Block Definition Diagram for Orbital model

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 57

Step IV Create Constraints

5. Create two constraint blocks, Average

and BudgetCalc, as shown in Figure

6.4. Note that Average uses list, a

constraint parameter with multiplicity

larger than one. To change the

multiplicity of a constraint parameter,

RC the constraint block in the BDD

diagram. Average calculates the

average of all the values contained in

list and returns a single value result,

mean. The ParaMagic User Guide

provides a list of Mathematica

functions that act on arguments with

multiplicity > 1.

6. Create a constraint block for plotting

the power and transmission availability versus Theta. Users of ParaMagic 17.0.1 Lite will not be

able to execute this graphing function and should skip step 6 a-d.

a. See User Guide for a list of standard Mathematica graphics and statistical functions that

are provided with ParaMagic. These should be configured to automatically load when

Mathematica is started.

Figure 6.3 Setting the value property Theta multiplicity to 1…*

Fig. 6.4 Constraint Blocks

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 58

b. Create a constraint block, XYTPlot, with four constraint parameters, x, y, t and c, where

x, y, and t have multiplicity 1..*.

c. Add a constraint to XYTPlot.

c = cMathematica(ICAXPlotXYT,t,x,y,"Availability","Sector","Power")

ICAXPlotXYT is a standard function for graphing two lists of values against a third list (x,

y, and t, respectively), with the three final string arguments (in quotes) determine graph

title, x axis label, and y axis label.

d. Assign the destination for the XYTPlot graphics output file.

i. Double-click on the constraint and open the Constraint window (see Figure 6.5)

ii. Select Tags

iii. Scroll down to <<External Models>> section

iv. Double-click on working_dir (or select and click Create Value)

v. Enter a destination directory for any plots generated, e.g. C:\\MD-temp. Note

that this directory must already exist when the ParaMagic model is executed (it

will not be created automatically) and a double back-slash character is used in

the pathname.

Note for Mac Users: The destination directory needs to be phrased using the path notation common to

Mac operating systems. For example /Users/JohnDoe/Documents/Orbital

Figure 6.5 Constraint window for defining graph output destination

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 59

Step V Create Parametrics Model

7. Create the parametrics diagram shown in Figure 6.6 inside the block Mission. There are two

usages of each of the constraint blocks defined in Step 5.

8. Create a second parametrics diagram inside Orbital, as shown in Figure 6.7. This diagram

exists to plot the values of the PowerUsage and XmitUsage against Theta during ParaMagic

execution. Users of ParaMagic 16.9 Lite will not be able to execute this graphing function

and should skip step 8 a-b.

a. Use Select Parts window to select PowerUsage, XmitUsage, Theta and Flag to

appear in the diagram.

b. Drag the constraint block XYTPlot into the diagram and connect as shown in 6.7.

ICAXPlotXYT will return a value of 1 into the parameter c and then into the value

property Flag when the Mathematica function is successfully executed.

Figure 6.6 Parametric diagram for Mission

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 60

Step VI Validate Parametrics Model

9. To validate the model schema, follow the instructions in Step VI of previous tutorials

Step VII Create an Instance

In this example, we will create an instance of the SysML model and three separate Microsoft
Excel spreadsheets that will link to this instance and allow data to be written from Excel to MagicDraw
SysML and from MagicDraw SysML to Excel. This supports the use of spreadsheets to load data into a
model and to report results from parametric simulation of the model. In normal circumstances, some or
all of these spreadsheets may exist prior to the SysML model, but in this tutorial, we will create them at
this stage.

10. Create three workbooks in Microsoft Excel that instances of the model will link to.

a. Open Excel and create and save the workbook spacecraft (.xls or .xlsx) shown in Figure

6.8 (in worksheet Sheet1).

Figure 6.8a Workbook spacecraft, showing
values

Figure 6.8b Workbook spacecraft, showing formulas

b. Build and save the spreadsheet orbital shown in Figure 6.9 (in worksheet Sheet1).

Figure 6.7 Parametric diagram for Orbital

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 61

Figure 6.9a Workbook orbital, showing
values

Figure 6.9b Workbook orbital, showing formulas

c. Build and save the

spreadsheet mission shown

in Figure 6.10 (in worksheet

Sheet1). This will be used to

report the results of the

parametric simulation, so the

non-title cells are currently

empty.

11. Create an instance. Review Step VII in the previous tutorials for the detailed procedures.

a. Create a package, Instance01, within the package Orbital.

b. Create a block definition diagram, Instance01, within the package Instance01.

c. Create the instances of the model elements as shown in Figure 6.11 by dragging

Instance from the toolbar, selecting the block it will be an instance of from the

Select Classifiers window, and assigning the instance block a unique name.

d. Create linkages between mis:Mission and orb1:Orbital, and between mis:Mission

and spa01:Spacecraft. Note that no linkages have been created between

spa01:Spacecraft and its subsystems. These are not required because there are no

parametric calculations linking these blocks in SysML parametric diagrams. They are

linked inside the spreadsheet spacecraft.xlsx.

Fig. 6.10 Workbook mission, showing titles

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 62

Figure 6.11 Instance01 Diagram

Discussion – Aggregates

There are two methods for creating Slots with multiple values (aggregates) in instances. The first

method, which we use here, is to read multiple values into it (e.g., from a range of cells in a spreadsheet).

Multiple slot values are automatically created. The second method is to create room for multiple values

before we load the slots. For example, if we were to double-click Theta in the Instance Specification

window as usual (see Figure 6.12), we could add additional empty slots by clicking the Plus button on the

bottom right side of the Instance Specification window nine times to create a total of ten empty values.

We could enter ten numbers in a similar way, using the Plus button after each value was entered.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 63

12. Create the connection between the spacecraft instance blocks and spreadsheet

spacecraft.xlsx.

a. In the Containment window, right-click on the instance block In1_01 and select

ParaMagic→Excel→Setup.

b. The ParaMagic-Excel Setup window will appear as in Figure 6.13a. The spreadsheet

to be linked can be identified in two ways

i. Browse to the desired file. This will enter the full path name in the

Workbook file text box, or

ii. Type in the filename, e.g. spacecraft.xlsx and click Refresh. If no path is

typed, it will assume spreadsheet is in the same folder as the model (.mdzip

file). This may be more flexible if the model and spreadsheet are moved

around between different systems.

c. After the Workbook name is entered and the Refresh button is clicked, the

available worksheets within that file will appear as a drop-down list by the

Worksheet name label. Select the desired worksheet, Sheet1. See Figure 6.13b.

Figure 6.12 Assigning ten empty values to the Theta parameter in orb1

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 64

Figure 6.13a ParaMagic- Excel Set-up for instance

Figure 6.13b ParaMagic- Excel Set-up for instance after
completion

d. In the Excel Setup browser, select the Power slot. See Figure 6.14.

i. Under Cell Range, enter the cell coordinates on the spreadsheet for the

parameter desired, B3.

ii. Under Access Mode, select Read (the value in the spreadsheet cell will be

copied to the instance, though only after we transfer the data in step 14).

iii. Repeat for Xmit. The corresponding Cell range is C3.

iv. Click OK

Figure 6.14 ParaMagic- Excel Set-up for slot

Figure 6.15 ParaMagic- Excel Set-up for slot

e. Repeat steps d, e, and f for the remainder of the

instance blocks in the diagram.

i. For slots where we will write the result

from the SysML model to the mission.xlsx

spreadsheet, set the Access Mode to Write, as in

Figure 6.15.

ii. For slots where we will read in multiple

values from a spreadsheet, Cell range will contain a

row or column of cells, as in Figure 6.16.
Figure 6.16 ParaMagic- Excel Set-up for aggregate slot

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 65

Step VIII Solve the Instance

13. Run the Excel→SysML data transfer

a. Right-click the Instance01 package.

b. Select ParaMagic→Excel→Read from Excel

c. During execution, all target values are read from all spreadsheets and written to

the SysML instance diagram. See Figure 6.17.

Figure 6.17 Values displayed in Instance01 diagram after Read from Excel

14. Define the ParaMagic causality for ParaMagic/Mathematica calculations.

a. Right-click on Instance01 and select ParaMagic→Util→Assign default causalities.

b. Assign target causality to EffectivePowerBudget, EffectiveXmitBudget and Flag

using the procedure described in previous tutorials. Users of ParaMagic 17.0.1 Lite

will not have a Flag slot

15. Run the ParaMagic/Mathematica parametric simulation.

a. Right-click the Instance01 package.

b. Select ParaMagic→Browse

c. Click Solve. Browser before and after solution is shown in Figure 6.18. Note that

Flag has a value of 1 after solution, indicating completion of the graph. Users of

ParaMagic 17.0.1 Lite will not have a Flag slot.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 66

Figure 6.18a Browser before execution. Figure 6.18b Browser after execution.

d. Click Update to SysML. mis:Mission slot values appear as in Figure 6.19.

16. Run the SysML→Excel data transfer

a. Right-click the Instance01 package.

b. Select ParaMagic→Excel→Write to Excel

c. During execution, all given values are read from the SysML instance diagram and

written to the spreadsheet mission.xlsx. See Figure 6.20.

Figure 6.19 Browser before execution. Figure 6.20 mission.xlsx after Write.

17. View the graph of PowerUsage and XmitUsage vs Theta created by ParaMagic. Users of

ParaMagic 17.0.1 Lite will not have included this graphing function and should skip step 17.

a. The ICAXPlotXYT function always returns a graphical file named XYTlineplot.jpg

and saves it in the directory designated in step 6.d.

b. Create a hyperlink from the model to the graph so that it can be called up quickly

after the simulation is complete.

i. Right-click on the package Orbital and select New Element→ Hyperlink

ii. A dialog box will appear, as shown in Figure 6.21. User the browser (button

with three dots) to point to the graphics file. Alternately, type in the name

or select it from the list.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 67

c. Double-click on the hyperlink in the Containment Tree to see graph, as in Figure

6.22.

Figure 6.21 Hyperlink

Figure 6.22 Graph created during ParaMagic execution

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 68

 7 SYSML PARAMETRICS TUTORIAL - HOMEHEATING

Note: ParaMagic Lite does not have the ability to call MATLAB functions and scripts. The

HomeHeating model will not be executable without upgrading to the full ParaMagic feature set. Standard

ParaMagic users must set Mathematica as the core solver to access all program features.

7.1 Objective

 Create a SysML project incorporating a Simulink simulation model of a home heating system and

a MATLAB function that predicts outside temperature. The Simulink model, a minor modification of a

standard demonstration model from MathWorks, is shown in Figure 7.1. Input 1 is the outside

temperature, which varies periodically through the day and through the year. Outputs 1, 2 and 3 are the

cumulative cost, indoor temperature, and outdoor temperature as a function of time. The objective is to

estimate the cost per day of heating the home.

Figure 7.1 Outline of Objective

What the User Will Learn

 Connect to MATLAB functions and scripts through SysML constraint blocks

 Connect to Simulink models through SysML constraint blocks

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 69

A large body of simulation models have been developed and validated using MATLAB and

Simulink (The MathWorks, Inc.). Being able to incorporate these existing models into larger SysML

models can greatly accelerate system development. ParaMagic allows Simulink/MATLAB models to be

treated as “black box” constraint blocks within MagicDraw parametric models. ParaMagic does not

convert SysML models into Simulink models or the reverse.

We assume in this tutorial that the reader is familiar with MATLAB and Simulink and focus

completely on the steps necessary to interface existing MATLAB/Simulink elements to SysML

parametric diagrams. For further help, see the ParaMagic Users Guide and the user documentation for

MagicDraw and MATLAB.

7.2 Step-by Step Tutorial

 Step I Create Project

1. Create new project

a. Name = HomeHeating

2. Create a package within the project

a. RC (Right-click) on Data folder in Containment tree (left column)

b. Choose New Element→Package

c. Enter Name = HomeHeating

Step II Create Infrastructure

3. Install ParaMagic Profile module.

Step III Create Structural Model

4. Create elements in model

a. Inside the HomeHeating package, create blocks HomeHeatingSystem, Home and

Outdoors.

b. Create a block definition diagram, Name = HomeHeating, and drag the blocks into the

diagram. See Figure 7.2. Note that we use a Directed Composition connector to link

HomeHeatingSystem to Home but reference the Outdoors block with a Directed

Aggregation arrow.

c. Create the Value Properties shown in Figure 7.2. All are Real with a multiplicity of 1.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 70

Step IV Create Constraints

5. Create a constraint block using the MATLAB function annualcycle,

function t = annualcycle(m)
% returns t, average temperature, based on m, month from 1 to 12
t = 70 + 20 * sin(2 * pi() / 12 * (m - 4));

annualcycle takes a month in the form of a number from 1 to 12 and returns t, the average daily
temperature (degrees F) for that month. We assume, for this tutorial, that the function already
exists. To use it with ParaMagic,

a. Add the following final two lines to the function, using the MATLAB editor or some other

text editor.

save('output.txt','t','-ASCII');
exit

These lines cause the value of t to be saved in an ascii file, output.txt, and retrieved by
ParaMagic after MATLAB has exited.

b. Save the complete function as annualcycle.m in the directory set up for MATLAB files in

ParaMagic.ini.

c. Create a constraint block, OutsideTemp, in the HomeHeating package, with two

constraint parameters, m and t, and the constraint, t = xfwExternal(matlab, function,

annualcycle, m). The arguments of the function xfwExternal are

i. external solver being called, here MATLAB

ii. type of element called, function or script, here function

Figure 7.2 Block Definition Diagram for HomeHeating model

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 71

iii. the name of the function or script, here annualcycle

iv. the input argument(s), here m. There may be more than one input argument.

6. Create a constraint block using the MATLAB script demoscriptasciisimulink, which launches the

Simulink model s234sldemo_househeat_SE.mdl. We assume that the Simulink model and

MATLAB script has been previously developed and tested.

a. Add the following initial and final lines to the script file

inSel= load('input.txt');

o1=inSel(1);
o2=inSel(2);
TempOutsite=inSel(3);
Amplitute=inSel(4);

(Body of existing script)

a=yout(o1,o2);
save('output.txt','a','-ASCII');
exit

The initial lines open a text file, input.txt, created by ParaMagic, and extract the four
input parameters for use in the Simulink model. The final lines extract a single value for
the 720 x 3 element matrix yout created by the Simulink model and save it to another
text file to be read by ParaMagic.

b. Save the modified script as demoscriptasciisimulink.m in the directory set up for

MATLAB files in ParaMagic.ini.

c. Create a constraint block, SimulinkHomeHeating, in the HomeHeating package, with

five constraint parameters and the constraint, cost=xfwExternal(matlab,scriptascii,

demoscriptasciisimulink,row,col,outtemp,daycyc). The arguments of the function

xfwExternal are

i. the external solver being called, here MATLAB

ii. type of element called, function or script, here scriptascii

iii. the name of the function or script, here demoscriptasciisimulink

iv. the first input argument, here row, the row of the matrix element to be

returned (the 360th element is at time 24 hours in this Simulink model)

v. the second input argument, here col, the column of the matrix element to be

returned (the 3rd element is the cumulative cost in this Simulink model).

vi. the third input argument, here outtemp, the outside temperature.

vii. the fourth input argument, here daycyc, the amplitude of the daily temperature

variation.

viii. The value returned is cost, the cumulative cost after one day of heating, which

corresponds to element (360, 3) of the output matrix calculated by the Simulink

model.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 72

Step V Create Parametrics Model

7. Create the parametrics diagram shown in Figure 7.3 inside the block Outdoors. The constraint

block OY:OutsideTemp contains the MATLAB function annualcycle.

8. Create the parametric diagram shown in Figure 7.4 inside the block Home. The constraint block

contains the MATLAB script demoscriptasciisimulink, which launches the Simulink model

s234sldemo_househeat_SE.mdl. Note that the value Temp calculated by the MATLAB function

annualcycle is one of the inputs to the Simulink model.

Step VI Validate Parametrics Model

9. To validate the model schema, follow the instructions in Step VI of previous tutorials

Step VII Create an Instance

10. Create an instance as shown in Figure 7.5

Figure 7.3 Parametric diagram for Outdoors

Figure 7.4 Parametric diagram for Home

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 73

Figure 7.5 Instance of HomeHeatingSystem

a. Point the Part Property OD_Home inside Home03 to the instance OD03:Outdoors.

Note that this assignment is not made automatically in creating the linkages, as in

previous examples.

i. Open the Instance Specification for Home03 (Figure 7.6)

ii. Select Slots

iii. Click on OD_Home:Outdoors

iv. Click Create Value button

Figure 7.6 Instance Specification for Home03

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 74

v. Select OD03:HomeHeating:Outdoors in the Select Elements window (see Figure

7.7)

vi. Click Add, OK, and Close

Figure 7.7 Select Elements to link OD03 to OD_Home

b. Create the links and populate the slots as shown in previous tutorials. The givens are

i. Month = 1 (January)

ii. DailyCycle = 10 (temperature varies +/- 10 daily)

iii. Row = 360 (one day as Simulink model timescale is set)

iv. Col = 3 (cumulative cost as Simulink model output array is configured)

c. Assign causalities to slots using the Add default causalities utility. Change causality of

DailyCost to target.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 75

Step VIII Solve the Instance

11. Open the Browser (Figure 7.8) and click Solve.

Figure 7.8 Browser before solution

a. During ParaMagic execution, MATLAB will launch and several figures will appear

briefly on your screen, including the Simulink model diagram from Figure 7.1 and

the PlotResults graph shown in Figure 7.9. The PlotResults window shows the

cumulative cost in the upper window over a two day period. The lower window

shows the outdoor temperature (violet) and the indoor temperature (yellow) on the

same time scale. The target indoor temperature is a constant, 70 F, set inside the

Simulink model (although the model could be modified to treat this as an input from

SysML, as well), but the actual indoor temperature varies as the thermostat cycles

on and off.

 The appearance of these figures is set in the Simulink model, not in the SysML

model or in the MATLAB script. These windows will disappear when the simulation

is complete and MATLAB exits.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 76

Figure 7.9 Plot Results window during Simulink execution

e. The final browser results are shown in Figure 7.10.

Figure 7.10 Browser after execution.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 77

 8 SYSML PARAMETRICS TUTORIAL – LITTLEEYE TRADE STUDY

8.1 Objective

This tutorial is a continuation of the LittleEye exercise in Section 4. Once a parametric model is

built and validated, users frequently want to explore variations in the initial parameter set. This can be

called a trade study, sensitivity analysis, or design of experiments and is helpful in identifying key inputs,

assessing risk and optimizing results.

ParaMagic uses the Excel Connection feature to set up the different initial parameter sets or

“scenarios” as rows in a spreadsheet. Parameter sets are automatically read, the model is repeatedly

executed and output values written back to the spreadsheet. Using the LittleEye model, we will run a

multi-variable trade study, to determine the sensitivity of the result to the number of planes, crews and

fuel loads available.

 What the User Will Learn

 Running a ParaMagic trade study

8.2 Step-by-Step Tutorial

Step VII Set-up a Trade Study

Start with the LittleEye model created in Section

4. The trade study uses the same ExcelConnection

interface that was described in the earlier Orbital tutorial.

The only difference is that, instead of reading in a single

set of values from the spreadsheet, processing them

using the parametric solver, and writing the results back

to the spreadsheet, the Trades Studies feature runs

multiple value sets in an automated batch mode process.

1. Create an MS Excel spreadsheet for the

trade study, as in Table 8.1. The trade

study will vary two parameters, Number of

Planes and Number of Crews, and calculate

a single output value, Miles Scanned Per 24

Hours. Each row is a single trial or

scenario. The trade study will start with

the first trial designated in the Excel

interface and work down one row at a

time. In this trade, we have 20 trials, a

combinatorial explosion of 3,4,5,6 and 7

planes and 4, 5, 6 and 7 crews. We save

the spreadsheet as LE_Trade.xlsx.

2. Set up the Excel linkages for Read and

Write as in the Orbital tutorial.

a. RC LittleEyeInstance01 and select ParaMagic→ Excel→ Setup

Number of
Planes

Number of
Crews

Miles Scanned
Per 24 Hours

3 4
 4 4
 5 4
 6 4
 7 4
 3 5
 4 5
 5 5
 6 5
 7 5
 3 6
 4 6
 5 6
 6 6
 7 6
 3 7
 4 7
 5 7
 6 7
 7 7
 Table 8.1 LE_Trade.xlsx

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 78

b. Select NumberPlanes

i. Enter LE_Trade.xlsx under Workbook

ii. Click Refresh

iii. Select Sheet1 under Worksheet.

iv. Under Cell Range, enter A2, the cell containing the first trial value for this

parameter. Do not enter a cell range; the number of trials will be specified

later.

v. Under Access Mode, select Read (see Figure 8.1)

c. Repeat for NumberCrews, with Cell Range = B2, Access Mode = Read

d. Repeat for MilesScannedPer24Hours, Cell Range = C2, Access Mode = Write.

e. Click OK to close Excel Setup window.

3. Set number of trade study scenarios to run.

a. Right-click on LittleEyeInstance01 and select ParaMagic→ Trade Study→ Setup.

b. As shown in Figure 8.2, enter the number of scenarios (20 in this example) and click OK.

Figure 8.1 Excel Setup window for trade study

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 79

Step VIII Run the Trade Study

4. Run the trade study.

a. Make sure that the trade study spreadsheet LE_Trade.xlsx is closed. Results cannot be

written to an open file.

b. Right-click on LittleEyeInstance01 and select ParaMagic→ Trade Study→ Run.

c. Figure 8.3 shows the message when the trade study is complete. Click OK.

d. Open LE_Trade.xlsx. It should appear similar to Table 8.2. Using the standard graphing

functionality of Excel, a plot similar to Figure 8.4 can easily be created.

Figure 8.2 Trade Study Setup window Figure 8.3 Trade Study Completion

Figure 8.4 Excel plot of trade study results

1500

2000

2500

3000

2 4 6 8

Number of Planes

Miles Scanned Per 24 Hours

4 Crews 5 Crews

6 Crews 7 Crews

Number of
Planes

Number of
Crews

Miles Scanned Per
24 Hours

 3 4 1612.8
4 4 1612.8
5 4 1612.8
6 4 1612.8
7 4 1612.8
3 5 2016.0
4 5 2016.0
5 5 2016.0
6 5 2016.0
7 5 2016.0
3 6 2337.2
4 6 2419.2
5 6 2419.2
6 6 2419.2

7 6 2419.2
3 7 2337.2
4 7 2822.4
5 7 2822.4
6 7 2822.4
7 7 2822.4

Table 8.2 LE_Trade.xlsx after trade study

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 80

 9 SYSML PARAMETRICS TUTORIAL - ELECTRONICS

Note: ParaMagic Lite does not have the ability to calculate with complex aggregates. The Electronics

model will not be executable without upgrading to the full ParaMagic feature set. Standard ParaMagic

users must set Mathematica as the core solver to access all program features.

9.1 Objective

 Create a SysML project describing a computer center that will be built in a variety of standard

configurations. Each configuration of the center will consist of one or more independent computer cells,

each composed of one or more server arrays, disk arrays, and other components. Each configuration can

also be viewed as consisting of one or more electronics racks, each of which contains one or more

electronic boxes, which might be a server array, a disk array, or some other component belonging to one

of the cells.

 Each of the standard configurations has a specific set of requirements that it must meet in terms

of the number of cells and total computing capacity, e.g. server calculating speed, disk storage. In

addition, each rack has a set of requirements that cannot be exceeded, including physical space, electrical

power, cooling capacity, etc. Our objective is to create a SysML model that requires the minimum

modeling effort, yet describes the full range of standard configurations and can test parametrically

whether each configuration meets its requirements. Creating and modifying configurations should be

simple and intuitive, so alternative designs can be evaluated. For simplicity, this tutorial only considers a

few types of components and requirements.

 Ordinarily, this type of problem is handled with a spreadsheet, which can grow quite complex.

Handling these same calculations inside the SysML model parametrically has several advantages,

 There is a single model, not a model and separate spreadsheet which must be synchronized,

 There is a clear distinction between the abstract model (the schema) and the concrete

configurations (instances) in SysML,

 The calculations are not hidden inside spreadsheet cells, but readily seen, modified and

documented in the SysML model itself.

What the User Will Learn

 Using complex aggregates

 Using generalization/specialization

 Working with requirements

Complex aggregates involve parameters shared by part properties with a multiplicity greater than

one. For example, if an assembly contains four equivalent parts, the weights of the four parts comprise a

complex aggregate of four values. This contrasts with the earlier concept of a primitive aggregate, a

single parameter containing multiple values. ParaMagic allows the user to sum, average, find a

maximum, or find a minimum of a complex aggregate, similar to the fashion in which primitive

aggregates are used in the Orbital example. The great value of complex aggregates is that parametric

relationships can be defined at the schema level without specifying the number of parts that will be used

in a specific instance.

Another useful feature of SysML is inheritance, or the ability to create generalized and

specialized forms of a system object. This helps when we want to group diverse objects in one set of

parametric calculations, but use each object’s unique properties in other calculations.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 81

9.2 Step-by-Step Tutorial

 Step I Create Project

1. Create new SysML project and corresponding package named Electronics.

Step II Create Infrastructure

2. Install ParaMagic Profile module.

Step III Create Structural Model

3. Create a structural model corresponding to Figure 9.1.

Figure 9.1 SysML Block Definition Diagram. Block color was set by right-clicking on block, selecting
Symbol Properties, and setting Fill Color to the desired shade.

a. Create ValueTypes for mm (millimeters), GFlops (calculating speed) and GB (gigabytes,

storage capacity). See the Satellite tutorial, Step 4a to review.

Electronics_BDDElectronics[Packag e] bdd []

«block»

System

values

Speed : GFlops

Storag e : GB

SpeedReq t : GFlops

Storag eReq t : GB

SpeedReq tVerify : Real

Storag eReq tVerify : Real

«block»

Cell

values

Heig ht : mm

«block»

Boxvalues

Heig ht : mm

Heig htReq tVerify : Real

«block»

Rack

values

Heig ht : mm

«block»

Box values

Speed : GFlops

«block»

Serv erArray

values

Storag e : GB

«block»

DiskArray

values

Speed : GFlops

«block»

Serv erArray values

Storag e : GB

«block»

DiskArray

-Boxes 1..* -Servers 1..* -Disks 1..*

-Cells 1..*-Racks 1..*

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 82

b. Create the blocks, value properties, and direct composition relationships as shown in

Figure 9.1. Note the ValueTypes assigned to the value properties.

c. Set the Multiplicities of the part properties Racks, Cells, Boxes, Servers and Disks as 1 to

1…*. This indicates that there can be, for example, one, two or more racks in a system.

To set the part property multiplicity for Racks,

i. Double-click on the composition arrow between System and Rack,

ii. In the Association Window, select Association Ends (see Figure 9.2)

iii. Under Association End A, set Multiplicity to 1…*.

iv. Repeat the process for the remaining part properties.

Figure 9.2 Association properties box, Association Ends table. Multiplicity under Association End A
is set to 1…*

d. Create a generalization relationship between Box and its two sub-types, ServerArray

and DiskArray.

i. Drag the Box, ServerArray and DiskArray blocks from the Containment tree to

an open area of the Electronics_BDD block definition diagram

ii. Click on ServerArray and select the Generalization arrow (open triangular head

pointing up and to the right) from the floating toolbar.

iii. Click on Box. A generalization is created pointing from ServerArray to Box

iv. Repeat for DiskArray. See Figure 9.3 (the two generalization arrows have been

merged).

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 83

Generalization

 In a generalization relationship, the sub-type,

such as ServerArray, inherits the value property

Height of its general type, Box, as well as having its

own value property Speed. An instance of

ServerArray is also an instance of Box. We will use

this feature when we create instances of the system.

Each component will serve as both an instance of

Box as part of a specific Rack and an instance of

ServerArray or DiskArray as part of a specific Cell.

Other component types, e.g. Router, could have been

created as additional sub-types of Box.

 Generalization relationships allow other

useful manipulations. For example, a constraint in a

subtype overrides a constraint of the same name in

the general type, so the parametric calculations can

be different at the instance level without changing the

schema.

Step IV Create Constraints

4. Create a set of Requirements and a corresponding set of Constraint Blocks which mirror the

Requirements. See the Requirements diagram in Figure 9.4 for the contents. To review

creating Requirements and Requirements Diagrams, see the Satellite tutorial, Section 6.

Note that the constraint parameters have specific ValueTypes.

Figure 9.4 Requirements diagram

Req uirementsElectronics[Packag e] req []

Id = "1.0.1"

Text = "The total height of all components in a rack

must not exceed 1000 millimeters. "

«requirement»

Rack Capacity

Id = "2.0.2"

Text = "The total longterm storage of all disk arrays

in a cell must meet or exceed the requirements for

that cell. "

«requirement»

Computing Storage

Id = "2.0.1"

Text = "The total computing speed of all server

arrays in a cell must meet or exceed the

requirements for that cell. "

«requirement»

Computing Speed

paramet ers

actual : GB

verify : Real

req t : GB

«constraint»

StorageConstraint

{verify=if(actual>= reqt, 1, 0)}

paramet ers

actual : GFlops

verify : Real

req t : GFlops

«constraint»

SpeedConstraint

{verify=if(actual>= reqt, 1, 0)}

paramet ers

actual : mm

verify : Real

«constraint»

RackConstraint

{verify=if(actual<= 1000, 1, 0)}«refine»

«refine»

«refine»

Figure 9.3 Generalization

Electronics_BDDElectronics[Packag e] bdd []

«block»

System

values

Speed : GFlops

Storag e : GB

SpeedReq t : GFlops

Storag eReq t : GB

SpeedReq tVerify : Real

Storag eReq tVerify : Real

«block»

Cell

values

Heig ht : mm

«block»

Boxvalues

Heig ht : mm

Heig htReq tVerify : Real

«block»

Rack

values

Heig ht : mm

«block»

Box values

Speed : GFlops

«block»

Serv erArray

values

Storag e : GB

«block»

DiskArray

values

Speed : GFlops

«block»

Serv erArray values

Storag e : GB

«block»

DiskArray

-Boxes 1..* -Servers 1..* -Disks 1..*

-Cells 1..*-Racks 1..*

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 84

5. Inside the Containment tree, create three constraint blocks to sum over Height, in the case

of Rack, and Speed and Storage, in the case of Cell. The contents of the constraint blocks

HeightSum, SpeedSum, and StoreSum, are shown in the two parametric diagrams shown in

Figure 9.5 and 9.6.

Figure 9.5 Parametric diagram for Rack

Figure 9.6 Parametric diagram for Cell

Step V Create Parametrics Model

6. Create a SysML Parametric diagram to define and display the relationships inside Rack

(Figure 9.5). Note that the part property Boxes:Box[1..*] represents all boxes belonging to

that rack and the constraint property HeightSum adds the heights of each of those boxes to

calculate a total height for all boxes in the rack, even though the number of boxes has not

been specified at this stage. The second constraint property in the diagram, Con3,

compares the actual total height (in mm) to 1000 and returns a Boolean value, 1 if less than

or equal to 1000 (requirement passed) and 0 if greater than 1000 (requirement failed).

[Block] Rack Rackpar []

«constraint»

Con3 : RackConstraint

{verify=if(actual<= 1000, 1, 0)}

actual : mm
verify : Real

HeightReqtVerify : Real

«constraint»

HeightSum : HeightSum

{a = sum(b)}

a : mm

b : mm

Height : mm

Boxes : Box [1..*]

Height : mme2

e3
e1

e4

[Block] par Cell Cell[]

Speed : GFlops

Serv ers : ServerArray [1..*]

«constraint»

Con2 : StorageConstraint

{verify=if(actual>= reqt, 1, 0)}

actual : GB

req t : GB

verify : Real

«constraint»

Con1 : SpeedConstraint

{verify=if(actual>= reqt, 1, 0)}

actual : GFlops

req t : GFlops

verify : Real

StorageReqtVerify : Real

SpeedReqtVerify : Real

«constraint»

Speed1 : SpeedSum

{a = sum(b)}

a : GFlopsb : GFlops

Storage : GB

Disks : DiskArray [1..*]

«constraint»

Store1 : StoreSum

{a = sum(b)}

a : GB
b : GB

SpeedReqt : GFlops

StorageReqt : GB

Speed : GFlops

Storage : GB

e1

e6
e7 e8

e3e2

e4

e10

e5

e9

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 85

7. Create a second SysML Parametric diagram to define and display the calculation of the

requirements verification relationships inside Cell (Figure 9.6). This appears like a doubling

of the Height requirement checking, with one branch for calculating speed of the Servers

and another for the storage capacity of the Disks. Note that the Speed and Storage

Requirements are left as variables, where the Height Requirement was “hard-coded” as

1000 in the constraint. In this project, each configuration (instance) of the system will have

different speed and storage needs, while racks are of a standard size.

Step VI Validate Parametrics Model

8. To validate the model schema, RC on System in the Containment tree and select

ParaMagic→Validate

Discussion - Schema and Instance

 At this stage, we have created a rather simple schema which may be applied to multiple instances

of arbitrary complexity. The algorithms we use to calculate system performance and resource needs are

created once in an easily understood graphical format (parametric diagram), and re-used wherever the

block holding that parametric diagram occurs. Compare this with a typical spreadsheet, where the

distinction between schema and instance is not made. Each formula is buried in multiple cells, all of

which must be updated when the model is changed. While spreadsheets excel at the organization and

presentation of tabular data, they have their limits as system modeling tools.

Step VII Create an Instance

9. Create an instance library containing an instance block for each of the standard components

to be used in building real system configurations. These instances can be used in each of

the configurations we build.

a. RC Electronics and create a new Package = InstanceLibrary

b. RC InstanceLibrary and create a new Instance Specification with Name =

A501_Server and Classifier = ServerArray

c. Assign values of 200 (mm) and 15 (GFlops) to the Height and Speed slots in

A501_Server.

d. RC InstanceLibrary and create a new Instance Specification with Name = J30_Disk

and Classifier = DiskArray

e. Activate the Height and Speed slots in J30_Disk and assign values of 300 (mm) and 5

(GB).

f. RC InstanceLibrary and select ParaMagic→Util→ Assign Default Causality.

10. Create an instance of a system configuration comprised of one computer cell spread over

two racks. See Figure 9.7.

a. RC Electronics and create a new Package = Instance01

b. In Instance01, create one instance of System (System01), two instances of Rack

(Rack1 and Rack2), and one instance of Cell (Cell1).

c. In Instance01, create a block definition diagram Instance01.

d. Drag System01, Cell1, Rack1 and Rack2 into the diagram.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 86

e. Drag A501_Server into the diagram 3 times. This creates 3 symbols of the same

instance block, not 3 blocks.

f. Drag J30_Disk into the diagram 3 times.

g. Create the links as shown in Figure 9.7. Note that each component instance is

linked to one rack (where it is physically located) and one cell (where it is

electronically part of a specific computer system).

Figure 9.7 Instance01 diagram containing one Cell spread over two Racks

h. Activate the slots in the rack and cell instances. In Cell1, SpeedReqt = 50 and

StorageReqt = 10. Other values are initially unknowns.

i. Apply Assign Default Causality to Instance01. Change causality of the …Verify slots

to target.

Discussion – Instance Libraries

 There are alternate ways to build instances from instance libraries, which may provide the same

answers but each with different strengths and weaknesses.

Instance01 Instance01[Packag e] bdd []

Cells = Cell1

Racks = Rack1 , Rack2

«block»

System01 : System

Disks = J30_Disk ,

J30_Disk, J30_Disk

Servers = A501_Server ,

A501_Server, A501_Server

Speed = ""

SpeedReqt = "50"

SpeedReqtVerify = ""

Storage = ""

StorageReqt = "10"

StorageReqtVerify = ""

«block»

Cell1 : Cell

Height = "200"

Speed = "15"

«block»

A501_Serv er : Serv erArray

Height = "200"

Speed = "15"

«block»

A501_Serv er : Serv erArray

Height = "200"

Speed = "15"

«block»

A501_Serv er : Serv erArray

Boxes = A501_Server ,

A501_Server, J30_Disk

Height = ""

HeightReqtVerify = ""

«block»

Rack1 : Rack

Boxes = A501_Server ,

J30_Disk, J30_Disk

Height = ""

HeightReqtVerify = ""

«block»

Rack2 : Rack

Height = "300"

Storage = "5"

«block»

J30_Disk : DiskArray

Height = "300"

Storage = "5"

«block»

J30_Disk : DiskArray

Height = "300"

Storage = "5"

«block»

J30_Disk : DiskArray

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 87

 In the approach shown above, a single instance block of each type appears multiple times in the

diagram, but each diagram symbol refers back to the same instance. A change in a slot value for

the instance block will appear in all of the diagram symbols for that component.

 Alternately, we could cut-and-paste multiple copies of the component in InstanceLibrary into

Instance01, then drag those copies into the instance diagram. In this case, each instance of the

component is independent and each slot value can be varied independently. This is a much better

approach when the instance block contains an unknown calculated during parametric execution,

because each instance can hold a different calculated value for this slot.

 Alternately, we could drag a single instance block into the diagram and create multiple links to it.

For example, the A501_Server instance block would be the destination of two links from Rack1,

three from Cell1 and one from Rack2. While the resulting diagram might be somewhat smaller,

it mignt also be more difficult to understand.

Step VIII Solve the Instance

11. Run the parametric solver

a. RC the Instance_01 package.

b. Select ParaMagic→Browse.

Figure 9.8 ParaMagic Browser for Instance_01, before solution, partially expanded

c. Press “Solve”. The results in Figure 9.9 show 1 (Pass) for HeightReqtVerify for both

racks and for StorageReqtVerify for Cell1. SpeedReqtVerify for Cell1 is 0 (Fail)

because the cumulative calculating speed of all servers in the cell is 45 GFlops, less

than the requirement of 50.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 88

Figure 9.9 ParaMagic Browser for Instance_01, after solution

Step VII Create an Instance (Second Configuration)

12. Create a new instance of a system configuration comprised of two computer cells spread

over three racks. See Figure 9.10. Repeat process in Step 10.

Step VIII Solve the Instance (Second Configuration)

13. Run the parametric solver. See Figure 9.11 for results. Note that no changes had to be made

to the parametric diagram or any other part of the schema to run the new parametric model

calculations.

ParaMagic
®
 17.0.2 Tutorials

Copyright © 2012, InterCAX LLC 89

Figure 9.10 Instance02 diagram containing two Cells spread over three Racks

Figure 9.11 Browser for Instance02 after solution

Instance02 Instance02[Packag e] bdd []

Cells = Cell1 , Cell2

Racks = Rack1 , Rack2, Rack3

«block»

System02 : System

Disks = J30_Disk ,

J30_Disk

Servers = A501_Server ,

A501_Server,

A501_Server

Speed = ""

SpeedReqt = "60"

SpeedReqtVerify = ""

Storage = ""

StorageReqt = "15"

StorageReqtVerify = ""

«block»

Cell1 : Cell

Disks = J30_Disk ,

J30_Disk

Servers = A501_Server ,

A501_Server

Speed = ""

SpeedReqt = "40"

SpeedReqtVerify = ""

Storage = ""

StorageReqt = "10"

StorageReqtVerify = ""

«block»

Cell2 : Cell

Boxes = A501_Server ,

J30_Disk, J30_Disk

Height = ""

HeightReqtVerify = ""

«block»

Rack2 : Rack

Boxes = A501_Server ,

 A501_Server,

J30_Disk

Height = ""

HeightReqtVerify = ""

«block»

Rack3 : Rack

Boxes = A501_Server ,

 A501_Server,

J30_Disk

Height = ""

HeightReqtVerify = ""

«block»

Rack1 : Rack

Height = "200"

Speed = "15"

«block»

A501_Serv er

Height = "300"

Storage = "5"

«block»

J30_Disk

Height = "200"

Speed = "15"

«block»

A501_Serv er

Height = "200"

Speed = "15"

«block»

A501_Serv er

Height = "300"

Storage = "5"

«block»

J30_Disk

Height = "300"

Storage = "5"

«block»

J30_Disk

Height = "300"

Storage = "5"

«block»

J30_Disk

Height = "200"

Speed = "15"

«block»

A501_Serv er

Height = "200"

Speed = "15"

«block»

A501_Serv er

