

75 Fifth Street NW, Suite 312

Atlanta, GA 30308, USA

Voice: +1- 404-592-6897

Web: Hwww.InterCAX.comH

E-mail: Hinfo@intercax.comH

ParaMagic
®
 18.0 beta

User Guide

Table of Contents

1 About ... 4

2 New Features ... 7

3 Quick Start .. 8

3.1 First Pass – execute existing models .. 8

3.2 Second Pass – create new models .. 10

4 Installation .. 11

4.1 Installation Requirements ... 11
4.1.1 System Requirements .. 11
4.1.2 MagicDraw Requirements... 11
4.1.3 Core Solver Requirements .. 11

4.2 Installation ProcessF.. 12

5 User Documents and Models ... 17

5.1 Users Guide .. 17

5.2 Tutorials ... 17

5.3 Examples .. 17

5.4 Relevant Publications ... 18

6 SysML Model Requirements ... 18

6.1 Structural requirements .. 18
6.1.1 Model schema requirements.. 19
6.1.2 Model instance requirements .. 19

6.2 Naming requirements ... 20

6.3 Mathematical expression requirements .. 20

6.4 Value types and QUDV profile ... 21

6.5 Math constants and functions ... 21

6.6 Conditional Functions and Operators .. 23

http://www.intercax.com/
mailto:info@intercax.com

ParaMagic
®
 18.0 beta User Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. ii

6.7 Aggregate Properties and Functions .. 24
6.7.1 Multiplicity .. 24
6.7.2 Instance Slot Values .. 24
6.7.3 Aggregate Functions and Operators .. 24

6.8 Complex Aggregate Relationships.. 25

6.9 Recursion and Redefinition .. 29
6.9.1 Recursion... 29
6.9.2 Redefinition ... 32

6.10 Limitations .. 41

7 Program Features ... 44

7.1 Command Menus .. 44

7.2 Browser .. 45
7.2.1 "Solution in progress" Window ... 46
7.2.2 Variable Browser .. 47
7.2.3 Toolbar .. 47
7.2.4 Relationship Browser .. 47
7.2.5 Editing an Instance in the Browser Window ... 48

7.3 ParaMagic
®
 Settings .. 49

7.4 ParaMagic
®
 Working Folder ... 51

8 Connections to External Tools .. 52

8.1 ParaMagic - Custom Mathematica Connection ... 52
8.1.1 Installation ... 52
8.1.2 Usage ... 53
8.1.3 Graphing Functions ... 53
8.1.4 Statistical Functions .. 54
8.1.5 User-Defined Mathematical Functions ... 55
8.1.6 UserfnN.m ... 55
8.1.7 Custom Functions .. 55

8.2 ParaMagic - Excel Connection .. 55
8.2.1 Generate/Update SysML Instance Model Structure from Excel Spreadsheets 56
8.2.2 Update SysML Instance Model Values from Excel Spreadsheets .. 66

8.3 ParaMagic - MATLAB Connection .. 75
8.3.1 Using MATLAB scripts .. 81
8.3.2 Using MATLAB functions.. 82

9 Trade Studies .. 84

9.1 Operation .. 84

9.2 Limitations .. 88

10 ParaMagic
®
 Silent (NEW) ... 89

10.1 Invoking ParaMagic
®
 in silent mode from plugins and scripts .. 89

10.1.1 Java API calls to invoke ParaMagic
®
 Silent ... 89

10.1.2 Install, Test, and Review the ParaMagic Silent Demo plugin ... 91

10.2 Invoking ParaMagic
®
 in silent mode from the ParaMagic

®
 plugin ... 92

ParaMagic
®
 18.0 beta User Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. iii

11 Copyright .. 92

11.1 Copyright statement from InterCAX LLC ... 92

11.2 Liability disclaimer from InterCAX LLC .. 92

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 4

11 AABBOOUUTT

This is the User Guide for ParaMagic
®
 18.0 beta plugin for MagicDraw/SysML 17.0.5 and above. The

sections in this document and their purpose are stated below:

 New Features in ParaMagic
®
 18.0

 Quick Start – speed up learning ParaMagic
®

(run existing models, create new models)

 Installation – installation instructions for ParaMagic
®

 HUser Documents – important documents for using ParaMagic
®
 (including tutorials and examples)

 HSysML Model Requirements – requirements for creating SysML models executable in ParaMagic
®

 Program Features – learn about the ParaMagic
®
 plugin user interface

 Connections to External Solvers – learn about incorporating Mathematica functions, MATLAB

functions/scripts & Simulink models, and Excel spreadsheets as part of SysML parameteric models,

and using ParaMagic to execute parametric models that require multiple solvers

 Trade Studies – learn to setup and run trade studies using ParaMagic
®

 ParaMagic
®
 Silent – learn to run ParaMagic

®
 in silent mode and invoke it in from your own plugins

 Updates – learn about key user-oriented updates since the last release

 Copyright –important copyright information that users must read

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 5

ParaMagic
®
 comes in two editions—ParaMagic

®
 Lite and ParaMagic

®
. The table below compares the

features of these editions. All features (both editions) are described in this Users Guide.

Features PM Lite PM

1) Regular math solving
Library of math functions available

Yes Yes

2) Use Mathematica / PlayerPro (bundled
1
) / OpenModelica (free) /

MATLAB Symbolic Math Toolbox as a core solver

Yes Yes

3) ParaMagic
®
 Silent

Java API methods to call ParaMagic
®
 in silent mode from your plugins

and scripts to validate, solve, and update SysML models with results

No Yes

4) Read/Write SysML instance values from/to Excel spreadsheets
Connect SysML instances to Excel spreadsheets and read/write from/to

spreadsheets.

Yes Yes

5) Generate & update SysML instance model from Excel spreadsheets

Automatically generate and update SysML instance models from tables

in Excel spreadsheets.

No Yes

6) Trade Studies
Execute parametric model to perform trade studies

Yes Yes

7) MATLAB/Simulink Connection
Wrap MATLAB functions/scripts as constraint blocks and use in

parametric models

No Yes

8) Custom Mathematica Connection
Wrap custom Mathematica functions as constraint blocks and use in

parametric models

No Yes

9) Complex Aggregates (see section 6.8)

Solve parametric models with complex aggregate relationships.

No Yes

10) Recursion and Redefinition (see section 6.9)

Solve parametric models with recursive structures and implicit/explicit

redefinition of properties

Yes Yes

1 ParaMagic® 18.0 comes bundled with PlayerPro math solver (Wolfram Research). Current users can upgrade to

ParaMagic®+PlayerPro bundled installation for a one-time nominal fee.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 6

The following conventions are followed in this document:

 ParaMagic
®
 implies this ParaMagic

®
 18.0 beta plugin

 MagicDraw SysML implies MagicDraw UML + MagicDraw SysML plugin

 Text enclosed by < > implies that you need to provide your system-specific settings, such as

installation directory path or IP address.

 Text written in this font implies that it is a computer keyword or an abbreviation for a computer

keyword.

 MD implies MagicDraw

 <MD_Root> refers to the MagicDraw installation directory

(e.g. C:\Program Files\MagicDraw_UML_17.0.5 on a Windows machine).

 OM implies OpenModelica

 MATLAB SMT implies MATLAB Symbolic Math Toolbox
2

MagicDrawFF

3
FF is a registered trademark of No Magic, Inc.

MathematicaFF

4
FF is a registered trademark of Wolfram Research, Inc.

MATLAB
5
 and Simulink

6
 are registered trademarks of The MathWorks, Inc.

OpenModelica
7
 is a freely-available modeling and simulation tool as part of the OpenModelica Project

supported by the Open Source Modelica Consortium (OSMC).

PlayerPro
8
 is a registered trademark of Wolfram Research, Inc.

2 MATLAB Symbolic Math Toolbox: http://www.mathworks.com/products/symbolic/
3 MagicDraw: Hhttp://www.magicdraw.comH
4 Mathematica (Wolfram Research): Hhttp://www.wolfram.com/H
5 MATLAB (The MathWorks) - http://www.mathworks.com/products/matlab/
6 Simulink (The MathWorks) - http://www.mathworks.com/products/simulink/
7 OpenModelica - https://openmodelica.org/
8 PlayerPro - http://www.wolfram.com/player-pro/

http://www.mathworks.com/products/symbolic/
http://www.magicdraw.com/
http://www.wolfram.com/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/simulink/
https://openmodelica.org/
http://www.wolfram.com/player-pro/

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 7

22 NNEEWW FFEEAATTUURREESS

The following new features are introduced in ParaMagic
®
 18.0:

1. Availability of ParaMagic® + Wolfram Player Pro bundle

With ParaMagic
®
 18.0, Wolfram Player Pro is available bundled with ParaMagic

®
 at a very low

incremental price. All of ParaMagic’s advanced parametric solving capabilities are currently (and in

future) available with Player Pro. The option to select Player Pro is now available in the ParaMagic

Settings category under MagicDraw Environment Option (Options > Environment), as shown below.

We highly recommend all our users who were not using Mathematica earlier to upgrade to this bundle

to explore the full power of ParaMagic
®
.

2. Availability of ParaMagic
®
 + Mathematica bundle

While Player Pro serves as an advanced math solver for ParaMagic
®
, users may still need the full

power of Mathematica front end, such as the ability to work with Mathematica notebooks, advanced

user interface for authoring custom Mathematica functions and scripts, access to Mathematica library

and documentation, and the ability to test and debug Mathematica functions before using them in

SysML parametric models. Users can also purchase Mathematica® bundled with ParaMagic® at a

discounted

incremental price.

3. ParaMagic
®
 Silent - Invoke ParaMagic in silent mode from your own plugins and scripts

ParaMagic
®
 18.0 comes with the ParaMagic

®
 Silent feature which provides two main capabilities for

automation: (1) ParaMagic
®
 Silent provides Java API methods to validate and solve parametric

models, and update SysML instance models with results. Users who have installed the ParaMagic
®

plugin can now invoke these API methods from their own plugins and scripts; (2) ParaMagic
®
 Silent

also enables users to solve parametric models and update SysML instance models without launching

the ParaMagic
®
 browser interface. See section 10 for details on ParaMagic

®
 Silent.

boolean validateSuccessful = ParaMagic_Silent.validate(instanceSpec, logFile, resultFile,

doneCheckingInMilliSeconds);

boolean solveSuccessful = ParaMagic_Silent.validateAndSolve(instanceSpec, logFile,

resultFile, doneCheckingInMilliSeconds);

boolean updateSuccessful = ParaMagic_Silent.validateAndSolveAndUpdate(instanceSpec,

logFile, resultFile, doneCheckingInMilliSeconds);

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 8

4. Significant improvement in solving speed with PlayerPro and Mathematica

ParaMagic
®
 18.0 comes with a strong integration with Player Pro and Mathematica, communicating

directly with the math kernel versus the file-based communication earlier. This offers significant

improvements in solving speeds, especially for parametric trade studies executing 1000s of scenarios,

and significant reduction in the communication overhead with Mathematica and PlayerPro solver

engines.

5. Support for binding connectors between constraint parameters

ParaMagic
®
 18.0 now supports binding connectors between two constraint parameters, as shown

below. This works for all types of constraint blocks, those with regular math equations as well as

those wrapping externally defined MATLAB functions/scripts and Mathematica functions, as shown

below.

6. Improved error handling and user messages when validating parametric models

ParaMagic
®
 18.0 comes with major improvements in handling errors and description of end user

messages when validating parametric models.

7. Improved support for MATLAB connection and messages

ParaMagic
®
 18.0 also provides major improvements in error handling and end user messages for the

MATLAB/Simulink connection (section 8.3).

8. Resolution of issues

In addition to the new and improved capabilities listed above, ParaMagic
®
 18.0 also resolves several

issues, such as those related to: (1) reading/writing nested instance structure from/to Excel

spreadsheets and (2) naming binding connectors and properties owned by blocks in read-only mode.

33 QQUUIICCKK SSTTAARRTT

3.1 First Pass – execute existing models

In this section, you will learn to execute two existing ParaMagic® models.

 The first model (Addition) is a basic model for testing ParaMagic
®
 installation. In this model, a

system variable is computed by adding two sub-system variables.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 9

 The second model (Satellite) represents a simple satellite. It exercises basic SysML block definition

and parametric modeling concepts and is thus useful for learning SysML parametrics.

Follow the steps below to get started.

1) Install ParaMagic
®
 — see installation instructions in Section X3X below.

2) Open and execute the Addition model

a) Start MagicDraw

b) Open the Addition model located here:
<MD_Root>\samples\ParaMagic\Tutorials\Addition.mdzip

c) Locate the package Addition::AdditionInstance01.

d) Right click on the package and select ParaMagic > Browse. This will launch the ParaMagic
®

browser, as shown in Figure 1.

e) Click the Solve button. After successful solution, the value of C (target variable) should equal to

3.

Note: You should have configured a core solver during installation (Section X3). If you have not

installed PlayerPro or Mathematica or OpenModelica (free) or MATLAB SMT, you can use our test

Mathematica server for a trial period (30 days). For this, you will need an internet connection. It is

possible that your enterprise firewall may block connection to our server.

Figure 1: ParaMagic® browser showing Addition model instance (solved state)

3) Open and execute the Satellite model

a) Open the Satellite model located here: <MD_Root>\
samples\ParaMagic\Tutorials\Satellite.mdzip

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 10

b) Locate the package Satellite::Instance01.

c) Right click on the package and select ParaMagic > Browse.

d) Click on the Expand button to expand the model.

e) Click on the Solve button. After solving, the ParaMagic® browser will show results as in Figure 2

below. The value of target variables should be as follows:

i) SatelliteSystem.Power_MOS=0.15
ii) SatelliteSystem.Weight_MOS=0.05

Figure 2: ParaMagic® browser showing Satellite model instance (solved state)

3.2 Second Pass – create new models

It is useful to identify several types of users who work with SysML parametrics:

 Type 1: Someone who works with an existing model, including executing it and performing

additional instance-oriented interactions such as solving, modifying values, changing causalities, and

re-solving.

o This type of user needs the least amount of SysML and parametrics know-how.

o This a good place to start for the casual user, for someone wanting to do basic demos, or someone

just beginning to explore SysML parametrics.

 Type 2: Someone who modifies the structure of an existing model and/or creates new instances.

o This type of user requires more know-how.

o They also need a fair amount of MagicDraw SysML tool-aided modification support (in some

respects more than Type 3 users).

o This is a good step towards becoming a Type 3 user.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 11

 Type 3: Someone who creates their own model structures and instances from scratch or from pre-

existing building blocks from a library.

o This type of user requires a fair amount of know-how and needs good MagicDraw SysML support.

 Type 4: Someone who creates building block libraries that Type 2 and Type 3 users can utilize.

o This type of user requires similar skills as Type 3, but with a bent towards making their work

reusable and modular, as well as providing good documentation and rigorous validation.

The First Pass in the previous section provided a quick introduction for Type 1 users. After completing

the First Pass, you can work at the Type 1 level with all the pre-built tutorial models and examples

provided in this release—see a listing of these models in Section X4X of this document.

After completing the First Pass, you also have a good “big picture” basis to now proceed with the step-by-

step tutorials (see section 5.2). After completing the tutorials, you will have achieved a good foundation

to work as a Type 3 user. There are other topics you may eventually need that may be addressed in future

tutorials and/or courses.

44 IINNSSTTAALLLLAATTIIOONN

4.1 Installation Requirements

4.1.1 System Requirements

1) Operating system: ParaMagic
®
 has been tested to work

9
 with MagicDraw SysML (i.e. MagicDraw

UML + SysML plugin) installed on the following operating systems:

a) Windows 7 64-bit edition

b) Mac OS X 10.8.5 (Mountain Lion) 64-bit edition

c) Linux - Ubuntu 10.4 LTS

2) Java: ParaMagic
®
 requires Java 1.6 or higher. ParaMagic

®
 uses the same Java installation that is

being used by MagicDraw. To check the Java version used by MagicDraw, check that the value of the

JAVA_HOME variable in <MD_Root>\bin\mduml.properties file points to Java 1.6 (JRE or JDK 6)

installation on your computer. For example, JAVA_HOME=C\:\\Program Files\\Java\\jre6 (or jre7)

3) Hard disk space: ParaMagic
®
 requires 40 MB of hard disk space for installation.

4) RAM: ParaMagic
®
 requires 500 MB of memory. Additional available RAM will improve the

performance of the plugin.

4.1.2 MagicDraw Requirements

1) ParaMagic
®
 18.0 beta requires MagicDraw SysML 17.0.5 (or higher).

2) ParaMagic
®
 18.0 beta has been tested to work with MagicDraw SysML 17.0.5 and 18.0.

4.1.3 Core Solver Requirements

ParaMagic
®
 allows users to select Mathematica / PlayerPro, OpenModelica

10
, or MATLAB SMT

11
 as the

core solver—see section 4.2 (Step 3) for installation and configuration details. ParaMagic
®
 has been

tested with Mathematica 9, PlayerPro 9, OpenModelica 1.9.0, and MATLAB/Simulink R2014a.

9 Unless otherwise specified, ParaMagic® may work with other editions of these OS but it is not been rigorously tested for

editions other than those mentioned here.
10 OpenModelica: https://openmodelica.org/
11 MATLAB Symbolic Math Toolbox: http://www.mathworks.com/products/symbolic/

https://openmodelica.org/
http://www.mathworks.com/products/symbolic/

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 12

4.2 Installation ProcessF

Before installing the ParaMagic
®
 plugin, make sure that you have administrative privileges to install new

software on your computer. Follow the steps below to install ParaMagic
®
 plugin.

Step 1. Start MagicDraw (MD)

If you are running MD, close it. Start MD from a user account with admin privileges on your computer.

On Windows 7 you must run MD as an administrator to install plugins even if you have admin privileges

on your account. To do this, right click on the MD application and select Run as administrator.

Step 2. Install the ParaMagic
®
 plugin

a) If you do not have the ParaMagic
®
 plugin installation (zip file),

i) On MD’s main menu bar, select Help > Resource/Plugin Manager

ii) Click on Check for Updates button

iii) You will see ParaMagic
®
 plugin version 18.0 beta available for installation. Select this plugin.

iv) Click on Download / Install button to install the ParaMagic
®
 plugin.

v) After installation, restart MD for the plugin to take effect.

b) If you have the ParaMagic
®
 plugin installation (zip file),

i) In the main menu bar, select Help > Resource/Plugin Manager

ii) Click on the Import button and specify the location of the plugin zip file.

iii) After installation, you will need to restart MD for the plugin to take effect. It is suggested that you

finish all the steps below before restarting MD.

iv) After installation, restart MD for the plugin to take effect.

Step 3. Select the core solver for ParaMagic
®

ParaMagic
®
 allows users to select Mathematica / PlayerPro, OpenModelica

12
, or MATLAB SMT as the

core solver. If you plan to use:

 Mathematica or PlayerPro as your core solver, follow steps in sub-section a below and then move to

Step 4.

 OpenModelica as your core solver, follow steps in sub-section b below and then move to Step 4.

 MATLAB SMT as your core solver, follow steps in sub-section c below and then move to Step 4.

12 OpenModelica: https://openmodelica.org/

https://openmodelica.org/

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 13

a) Using Mathematica or PlayerPro as your core solver

i) In MagicDraw, go to Options > Environment and select ParaMagic Settings, as shown in

Figure 3.

ii) Set Core Solver variable to Mathematica / PlayerPro. If you do not see Mathematica /

PlayerPro option for the Core Solver but only see Mathematica, click on the Reset to

Defaults button at the bottom right hand corner of the Settings window.

Figure 3: ParaMagic® Settings window

iii) For short-term (30 day) evaluation, you can use our test Mathematica server. For long-term

production usage, you should use your own Mathematica license.

iv) To use our test Mathematica server for short-term evaluation, follow the steps below. Note

that you will need an internet connection and your enterprise firewall may block connection

to the Mathematica server.

(1) In the ParaMagic Settings window (Figure 3) locate the second section – Local vs.

Remote core solver.

(2) Set Use Local Solver variable to false

(3) Check that the Remote Solver – Host URL variable is set to xws.magicdraw.com:8080

(4) Check that the Remote Solver – Access Key variable is set to tempAccessKey

(5) Click OK and close the ParaMagic Settings window.

v) If you are using your own Mathematica or PlayerPro license, follow the steps below.

(1) Check that Mathematica or PlayerPro is installed correctly by trying to launch it from

your Start menu (Windows) or Finder (Mac).

(2) In MagicDraw, go to Options > Environment and select ParaMagic Settings, as shown in

Figure 3.

(3) Under the Core solver and other settings section, locate the Mathematica Kernel

property.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 14

(4) Click on the value field of the Mathematica Kernel property and then select the file

chooser button, as highlighted in Figure 4. Browse and select the MathKernel executable

file.

(a) For Windows 7, this is typically

C:\Program Files\Wolfram Research\Wolfram Player Pro\9.0\MathKernel.exe,

(b) For Mac OS X, this is typically
/Applications/Wolfram Player Pro.app.app/Contents/MacOS/MathKernel.

(c) Mathematica Kernel field is not used for Linux. When Mathematica / PlayerPro are

installed, a shortcut is created (/usr/local/bin/math) and it provides access to the

math kernel installed with Mathematica / PlayerPro.

(5) Under the Local vs. Remote core solver section, set Use Local Solver variable to true

Figure 4: Click on the file chooser to specify the location of MathKernel executable file for

Mathematica or PlayerPro installation

(6) Click OK in the ParaMagic Settings window.

b) Using OpenModelica as your core solver

OpenModelica is a free Modelica-based modeling and simulation tool available as part of the

OpenModelica Project that is managed by the Open Source Modelica Consortium (OSMC).

i) Download and install OpenModelica 1.9.0

(1) Windows – Download and run the OpenModelica-1.9.0-revision-17628.exe file located here:

https://build.openmodelica.org/omc/builds/windows/releases/1.9.0/

(2) Mac – Download the openmodelica-devel-8719-tag-1.7.0.dmg file locate here:

http://build.openmodelica.org/omc/builds/mac/binaries/. OpenModelica on Mac requires

XCode. For details, see http://www.openmodelica.org/index.php/download/download-mac

(3) Linux – Follow the installation instructions located here:

https://openmodelica.org/index.php/download/download-linux

https://build.openmodelica.org/omc/builds/windows/releases/1.9.0/OpenModelica-1.9.0-revision-17628.exe
https://build.openmodelica.org/omc/builds/windows/releases/1.9.0/
http://build.openmodelica.org/omc/builds/mac/binaries/openmodelica-devel-8719-tag-1.7.0.dmg
http://build.openmodelica.org/omc/builds/mac/binaries/
http://www.openmodelica.org/index.php/download/download-mac
https://openmodelica.org/index.php/download/download-linux

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 15

ii) In MagicDraw, go to Options > Environment and select ParaMagic Settings, as shown in Figure 5

below.

iii) Set Core Solver variable to OpenModelica.

iv) If you are on Mac OS, set the OpenModelica Installation Location variable (Figure 5) to the

location of omc file in your OpenModelica installation, for e.g. /opt/openmodelica/bin/omc.

Figure 5: For Mac OS, set the variable OpenModelica Installation Location

v) If you are on Windows or Linux, you do not need to set anything else after installing

OpenModelica in step iii above.

vi) Click OK in the ParaMagic Settings window.

c) Using MATLAB Symbolic Math Toolbox (SMT) as your core solver

i) Ensure that MATLAB and Symbolic Math Toolbox are installed on your machine.

ii) In MagicDraw, go to Options > Environment and select ParaMagic Settings, as shown in Figure

5 above.

iii) Set Core Solver variable to MATLAB_SMT.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 16

iv) If you are on Mac or Linux, set the MATLAB Installation Location variable to the location of the

MATLAB executable file, for e.g. /Applications/MATLAB_R2014a.app/bin/matlab (for Mac) or

/home/intercax/MATLAB/R2014a/bin/matlab (for Linux)

v) If you are on Windows, you do not need to set anything else.

vi) Click OK in the ParaMagic Settings window.

Step 4. Close and Restart MagicDraw (MD) as an Administrator

After restarting MD, your installation is configured to use the ParaMagic
®
 18.0 beta plugin.

Step 5. Test ParaMagic
®
 installation

a) In MagicDraw, select Options > Environment. Select Plugins on the LHS, as shown in Figure 6

below, and click on the Provider column to sort the list by providers. You should see ParaMagic
®

18.0 beta in the list of installed plugins. Verify that the Loaded and Enabled properties are set to

true for the ParaMagic
®
 plugin.

b) Open and execute the Addition model and the Satellite model as shown in section 2 above.

i) During solution, ParaMagic
®
 will indicate the core solver that is being used for solving.

Verify that this is same as the core solver your setup and selected in Step 3 above.

ii) Ensure that you get the same solution results as shown in section 2 (Figure 1 and Figure 2).

Figure 6: Verify that ParaMagic

®
 is listed as a plugin and Loaded and Enabled properties are set true

Congratulations! You are now setup to use ParaMagic
®
.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 17

55 UUSSEERR DDOOCCUUMMEENNTTSS AANNDD MMOODDEELLSS

5.1 Users Guide
1) This document is the User Guide for ParaMagic

®
 plugin

2) This Users Guide is also located here after installation:
<MD_Root>\manual\ParaMagic\Users_Guide.pdf

5.2 Tutorials
1) This installation comes with 8 tutorials. Each tutorial has step-by-step instructions to create a valid

SysML model that can be solved using this plugin. All tutorials are described in one document that is

located here: <MD_Root>\samples\ParaMagic\Tutorials\Tutorials.pdf

2) Each tutorial also has a pre-built SysML model with instances that are ready to explore, solve, and

perform trade studies on instance values. These models are located here:
<MD_Root>\samples\ParaMagic\Tutorials

a) Addition is a SysML model for learning how to create basic parametric equations. Its tutorial

includes step-by-step instructions and demonstrates an addition operation applied to system

properties.

b) CommNetwork is a SysML model of a communication network system.

c) Electronics is a SysML model of a network architecture.

d) LittleEye is a SysML model of a UAV-based road scanning system named LittleEye.

e) LittleEyeTradeStudy is a SysML model to demonstrate ParaMagic’s trade study capabilities using

the LittleEye system model (above).

f) Satellite is a SysML model of a satellite system.

g) Orbital is an early-stage orbital mechanics and spacecraft model in SysML that demonstrates the

use of ParaMagic-Excel connection (section 8.1) and ParaMagic-Custom Mathematica

connection (section 8.1).

h) HomeHeating is a SysML model of a home heating system that demonstrates the execution of

Simulink models using the ParaMagic-MATLAB connection (section 8.3).

5.3 Examples
1) This installation comes with 11 example SysML models that are ready to explore, solve, and perform

trade studies on instance values.

2) These example SysML models are located here: <MD_Root>\samples\ParaMagic\Other_Examples.

A document describing these example models is located here:
<MD_Root>\samples\ParaMagic\Other_Examples\Other_Examples.pdf

3) The following example models are provided with ParaMagic
TM

i) Banking is a SysML model of a banking services system.

ii) Circuit is a SysML model of an electrical circuit and demonstrates the application of Ohm's Law.

iii) Financial is a SysML model of financial projections for a small business.

iv) Linkage Systems (formerly FlapLinkage) is a SysML model of mechanical linkage system—a

part used in an airframe structure. It demonstrates the use of SysML for modeling design

constraints as well as building block libraries and other modeling concepts. See item 0 below for

a corresponding paper (Part 2) that overviews the theory behind SysML parametrics as well as

applications to simulation templates.

v) Insurance is a SysML model of a web-based insurance claim filing system.

vi) OpAmp is a SysML model of an operational amplifier. By using the same constructs as in the

Circuit model, it demonstrates the reusability of concepts defined in SysML.

vii) ProjectPlan is a SysML model of a project scheduling system and demonstrates the use of

conditionals (if-then statements).

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 18

viii) SpringSystems is a SysML model of a system of two springs connected in series and exhibiting

linear deformation behavior. See item 0 below for a corresponding paper (Part 2) that overviews

the theory behind SysML parametrics as well as applications to simulation templates.

ix) Trade is a SysML model of a trade financing system.

x) VehicleMassRollup is a SysML model of a vehicle system and demonstrates how to model variant

architectures using recursion and redefinition and execute the same using ParaMagic
®
.

xi) MATLAB_Example is a SysML model illustrating the different ways to connect to

MATLAB/Simulink models using ParaMagic
®
.

Note that the intent of the tutorial and example models is to present how SysML (Parametrics in

particular) can be used for different types of problems in different domains. Some models are created

for demonstration purposes only, and not intended to represent all aspects of the systems in the most

accurate manner.

5.4 Relevant Publications

1) Bajaj, M., Zwemer, D., Peak, R., Phung, A., Scott, A. and Wilson, M. (2011). Satellites to Supply

Chains, Energy to Finance — SLIM for Model-Based Systems Engineering, Part 1: Motivation and

Concept of SLIM. 21st Annual INCOSE International Symposium, Denver, CO, June 20-23, 2011.

(available at http://www.omgsysml.org/SLIM_for_MBSE_Bajaj_Part1.pdf)

2) Bajaj, M., Zwemer, D., Peak, R., Phung, A., Scott, A. and Wilson, M. (2011). Satellites to Supply

Chains, Energy to Finance — SLIM for Model-Based Systems Engineering, Part 2: Applications of

SLIM. 21st Annual INCOSE International Symposium, Denver, CO, June 20-23, 2011. (available at

http://www.omgsysml.org/SLIM_for_MBSE_Bajaj_Part2.pdf)

3) Peak, R.S., Roger M. Burkhart, Sanford A. Friedenthal, Wilson, M.W., Bajaj, M. and Kim, I. (2007).

Simulation-Based Design Using SysML Part 1: A Parametrics Primer. The Seventeenth International

Symposium of the International Council on Systems Engineering, San Diego, California, USA June

24 -28, 2007. (available at http://eislab.gatech.edu/pubs/conferences/2007-incose-is-1-peak-primer/)

4) Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M. and Kim, I. (2007).

Simulation-Based Design Using SysML Part 2: Celebrating Diversity by Example. The Seventeenth

International Symposium of the International Council on Systems Engineering, San Diego,

California, USA June 24 -28, 2007. (available at http://eislab.gatech.edu/pubs/conferences/2007-

incose-is-2-peak-diversity/)

66 SSYYSSMMLL MMOODDEELL RREEQQUUIIRREEMMEENNTTSS
This section consists of a list of modeling requirements that need to be satisfied to use the solver

capabilities of ParaMagic
®
 plugin. Some of these requirements are based on recommended practices for

enhanced model interoperability; some are to make SysML models less ambiguous for the plugin and

Mathematica / PlayerPro / OpenModelica / MATLAB SMT solvers; while others are limitations of this

version of the plugin and/or supported solvers. These guidelines are followed in the tutorial examples

included with this installation. It is suggested that a user walks through the tutorials first and then review

these requirements for better understanding.

6.1 Structural requirements

These requirements deal with the model schema and instances created using SysML. In our terminology,

a schema defines the structure of the model using SysML constructs such as blocks, properties, and

constraint blocks; and an instance conforms to this structure and has populated slots (properties)—

http://www.omgsysml.org/SLIM_for_MBSE_Bajaj_Part1.pdf
http://www.omgsysml.org/SLIM_for_MBSE_Bajaj_Part2.pdf
http://eislab.gatech.edu/pubs/conferences/2007-incose-is-1-peak-primer/
http://eislab.gatech.edu/pubs/conferences/2007-incose-is-2-peak-diversity/
http://eislab.gatech.edu/pubs/conferences/2007-incose-is-2-peak-diversity/

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 19

completely or partially. There may be several instance models for a given schema. A system model

schema represents a family of system alternatives (topological or parametric variations) while a system

model instance represents a specific system alternative that is analyzed and evaluated.

6.1.1 Model schema requirements

1) ParaMagic
®
 requires that all SysML elements required for defining the schema must be in packages.

2) If a constraint property (say c1) defined in a block has the same name as an inherited constraint

property, ParaMagic
®
 will override the inherited constraint property with the constraint property c1.

Modelers can use this feature to define abstract constraint properties for a block that are implemented

or overridden by constraint properties of the block’s subtypes.

6.1.2 Model instance requirements

1) Instance slots that correspond to block properties participating in parametric relations must be

initialized/populated unless the lower bound of the multiplicity for these properties is equal to 0

(zero). ParaMagic
®
 provides capabilities to automatically initialize slots.

2) Instance slots corresponding to value properties can be populated by LiteralReal, LiteralInteger, and

LiteralString value specifications.

3) All numeric values in instance slots must begin with a number (0-9). Values beginning with a space

or decimal point may not be read correctly.

4) If the value property corresponding to a slot is connected to the outputs of multiple ONEWAY

relations, then the slot must have causality “given”. This restriction is imposed to prevent instance

models from being over-constrained.

5) Causality Verification and Assignment: The truth table below states valid causality assignments for

slots in a SysML instance model. Causality can be set and is validated for only those slots whose

corresponding value properties participate in parametric relations. The validity of a causality

assignment is based on whether or not a slot has value(s). In the table, TRUE implies valid

assignments and FALSE implies invalid assignments. For example, if a slot has values and its

corresponding value property participates in parametric relations, then its causality may be given,

ancillary, or target but not undefined. Its causality may be ancillary or target only when the model is

in a solved state. Similarly, if a slot has no values (empty), then its causality may be undefined or

target but not given or ancillary.

Table 1: Truth table for valid causality assignments

 causality

If a slot given undefined ancillary target

has values TRUE FALSE TRUE TRUE

does not have

values (empty)
13

FALSE TRUE FALSE TRUE

ParaMagic
®
 checks for validity of causality assignments when users attempt to browse SysML

instance models in the ParaMagic
®
 browser. The causality assignment utility in ParaMagic

®
 that is

invoked on instance models (ParaMagic > Util > Add default causalities) assigns default causalities

based on this table.

13 “Empty” denotes that the slot (or slot value) has been activated but does not contain any value (i.e. its value is an empty string

and represented as a Literal String). Note that if the slot (or slot value) is not activated, then causality cannot be assigned to it

anyway.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 20

6) Slots corresponding to value properties that are typed by Integer (or its subtype) should have causality

“given”, i.e. they can only be inputs to parametric calculations. ParaMagic
®
 treats integers (only

allowed as inputs) as real numbers during solving.

6.2 Naming requirements

1) All SysML blocks should have a unique name, even though they are in different packages.

2) All SysML blocks, constraint blocks, and properties (part / reference / shared / value) should have a

name.

3) A block and its parent package cannot have the same name. For example, a block named A cannot be

owned by a package named A.

4) A block and a package at the same level cannot have the same name. For example, a block named B

and a package named B cannot be at the same level—owned directly by another package.

5) Block properties and constraint parameters should not have names that are reserved math keywords.

In addition to names of math constants and functions listed in section 5.4, the following names are

also reserved: binom, str.

6) All SysML model elements should have names that start with an alphabetical character (A-Z, a-z).

7) The allowable character classes for naming model elements are: A-Z, a-z, 0-9, underscore, and

whitespace.

8) Period (.) should not be used in naming model elements. Some of these limitations are due to math

parsers and solvers.

6.3 Mathematical expression requirements

1) Mathematical functions (e.g., min, exp) should begin with a lower-case letter and use standard

parentheses () to enclose their arguments.

2) A valid mathematical equation for ParaMagic
®
 processing purposes is one that has a single variable

on the LHS. For example, a=b+c will be processed but users will face issues processing the same

equation defined as b+c=a.

3) The list of math operators supported
14

 in ParaMagic
®

are as follows:

a) Addition (+), Subtraction (-), Multiplication (*), Division (/)

b) Unary plus (+x), and Unary Minus (-x)

4) It is recommended that large expressions be broken into simpler expressions that are more readily

solvable by Mathematica / PlayerPro / OpenModelica / MATLAB SMT. For example, the expression

below

k = (0.577*3.14*E*d) / ln(((1.15*t+D-d)*(D+d)) / ((1.15*t+D-d)*(D-d)))

can be broken into two expressions:

k = (0.577*3.14*E*d) / ln(dummyVariable)
dummyVariable=((1.15*t+D-d)*(D+d)) / ((1.15*t+D-d)*(D-d))

Since ParaMagic
®
 supports only one constraint expression per constraint block, this would require

you to create two constraint blocks (one for each expression) and to create a dummy value property

(corresponding to the dummyVariable) in the context block.

In general, the math expression syntax supported by ParaMagic
®

is based on JEP
15

 (with extensions).

14 Note that ParaMagicTM may not warn if other operators are used. Users should only use the math operators stated here.
15 JEP: http://www.singularsys.com/jep/

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 21

6.4 Value types and QUDV profile

ParaMagic
®

requires that value properties and constraint parameters participating in parametric constraint

relations satisfy ONE OF the following requirements. Let the value type of the given value property (or

constraint parameter) be V. Then,

1. V should be the value type “Real” (SysML Profile::Blocks::Real) or its subtype, OR

2. V should be the value type “Integer” (SysML Profile::Blocks::Integer) or its subtype, OR

3. V should be a value type with the quantityKind field populated. Such a value type represents a

“quantity” which per SysML 1.3 can be measured (is quantifiable) using a number. See SysML 1.3

specification, section 8.3.2.10, page 50.

Requirement 3 above allows ParaMagic
®
 users to leverage the standard value types now available with

the SI ValueType library in MagicDraw (QUDV Library::SI ValueType Library).

Note that value properties typed by String (SysML Profile::Blocks::String) are handled by ParaMagic
®
 but

cannot participate in parametric relations.

ParaMagic
®

has the following limitations regarding value types:

1. Internally, ParaMagic
®

treats all value types obeying the requirements above as real numbers.

2. ParaMagic
®
 does not check for the compatibility of value types (or constraint parameters) connected

using binding connectors. This verification is performed by MagicDraw. Hence, users should check

and resolve warnings and errors generated by MagicDraw when connecting value properties and/or

constraint parameters before launching ParaMagic
®
.

3. ParaMagic
®
 does not perform automatic unit conversions.

The ParaMagic
®
 browser only displays slots whose corresponding value properties are typed by Real,

Integer, String, or a value type representing a quantity, and their subtypes.

6.5 Math constants and functions

ParaMagic
®
 currently supports the following math constants and functions in defining constraint

specifications of constraint blocks.

Some functions are not supported or have limited support if OpenModelica (OM) or MATLAB SMT is

selected as the core solver. These functions have comments in blue (for OpenModelica) and red (for

MATLAB SMT).

A list of constants is provided below.

 Name Syntax Example

Pi(π) pi y = pi + x

A list of functions is provided below. In principle, several of these functions may be executed in different

causalities (directions)—computing LHS value(s) for a given set of RHS values, or computing RHS

value(s) for a given set of RHS and LHS values. In the current version of this plugin, these functions and

expressions containing these functions are verified to work reliably (i.e. give a correct answer) only in the

natural causality (computing LHS value from a given set of RHS values). Hence, these functions are

marked as ONEWAY by default when used in a MagicDraw model. If you would like to try solving a

function (or the expression it is being used in) in the reverse direction, uncheck the ONEWAY mark for

that function (or expression) in the Relationship Browser section of the ParaMagic browser (see Figure 33

in section 7.2) and press Solve. Note that this selection will not be stored in ParaMagic
®

settings. This

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 22

implies that when the browser is launched the next time, the ONEWAY marks for these functions need to

be unchecked again. The two primary reasons for marking these functions as ONEWAY by default are:

2) For large expressions involving several functions, Mathematica may not always return an answer

when these expressions are evaluated in non-natural directions.

3) The current version of ParaMagic
®

does not support inequalities. Without an inequality constraint,

some of the functions (esp. trigonometric functions) return a general solution instead of a specific

solution. For example x=sin(pi/2) will return the general solution x = 2*n*pi + pi/2. This limitation

will be addressed in future release(s) of ParaMagic
®
.

If OpenModelica is selected as the core solver, none of the functions are marked as ONEWAY. However,

this may result in an unexpected (but correct) answer if some of these functions are solved in different

directions (due to lack of support for inequalities). For example, solving 1=Sin(x) may not always return

x=1.570 (or pi/2).

Name Syntax Example

Sine sin(x) y = sin(x)

Cosine cos(x) y = cos(x)

Tangent tan(x) y = tan(x)

Arc Sine asin(x) y = asin(x)

Arc Cosine acos(x) y = acos(x)

Arc Tangent atan(x) y = atan(x)
Arc Tangent

(gives the arc tangent of y/x, taking into

account which quadrant the point (x, y) is in)
atan2(x,y) z = atan2(x,y)

Hyperbolic Sine sinh(x) y = sinh(x)

Hyperbolic Cosine cosh(x) y = cosh(x)

Hyperbolic Tangent tanh(x) y = tanh(x)
Inverse Hyperbolic Sine

Not supported for OM
asinh(x) y = asinh(x)

Inverse Hyperbolic Cosine

Not supported for OM
acosh(x) y = acosh(x)

Inverse Hyperbolic Tangent

Not supported for OM
atanh(x) y = atanh(x)

Natural Logarithm (ln(x))

(where x is a positive real number)
ln(x) y = ln(x)

Logarithm (logbx)

(where b and x are positive real numbers)

For OM, only log (10,x) is supported
log(b,x) y = log(b,x)

Exponential exp(x) y = exp(x)

Absolute Value abs(x) y = abs(x)

Random number (between 0 and 1) rand() y = rand()

Modulus mod(x,y) z = mod(x,y)

Square Root sqrt(x) y = sqrt(x)

Power x
y
 pow(x,y) z = pow(x,y)

Round (rounds argument to the closest integer,

or the closest even integer for arguments

equidistant from two integers)
round(x) y = round(x)

Ceil (rounds argument to the smallest integer

greater than or equal to the argument)
ceil(x) y = ceil(x)

Floor (rounds argument to the greatest integer

less than or equal to the argument)
floor(x) y = floor(x)

Min (returns the argument with minimum min(x1,x2,x3,...) y = min(x1,x2,x3)

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 23

value)

For Mathematica, x1,x2,...can be arrays

or single-valued

For OM, x1,x2,...can only be single-

valued

For MATLAB SMT, use min(X) if X is

an array, or min(x1,x2,x3,…) if x1,x2,

x3,… are single-valued. Also see note16

below.

Max (returns the argument with maximum

value)

max(x1,x2,x3,...)
For Mathematica, x1,x2,...can be arrays

or single-valued

For OM, x1,x2,...can only be single-

valued

For MATLAB SMT, use max(X) if X is

an array or max(x1,x2,x3,…) if x1,x2,

x3,…are single-valued. Also see note16

below.

y = max(x1,x2,x3)

Average (returns the arithmetic mean of

members of the array passed as argument)
avg(x)
where x is an array

y = avg(x)

Sum (returns the sum of the members of the

array passed as argument)
sum(x)
where x is an array

y = sum(x)

6.6 Conditional Functions and Operators

ParaMagic
®

currently supports conditional statements in the following format.

<Result> = if(<Condition>, <Result if Condition = true>, <Result if Condition = false>)

For example, in the conditional statement
X2 = if(X1 > 0, X1, -X1)

X2 is set equal to X1 when X1 is positive and –X1 when X1 is negative. Hence, this condition is the

equivalent of X2 = abs(X1).

The following operators can be used as part of the condition term

Operator Syntax Example

Equal to == y = if(x == 1, 2, 1)

Not Equal to != y = if(x != 1, 2, 1)

Greater than > y = if(x > 1, 2, 1)

Less than < y = if(x < 1, 2, 1)

Greater than or Equal to >= y = if(x >= 1, 2, 1)

Less than or Equal to <= y = if(x <= 1, 2, 1)

AND && y = if(x1 == 0 && x2 < 5, 2, 1)

OR || y = if(x1 == 0 || x2 < 5, 2, 1)

NOT ! y = if(!(x>1), 2, 1)

For MATLAB SMT, conditional expressions do not work reliably when combined with other

expressions. For e.g. a = b + if(d>e, 1, 0) will not work with MATLAB SMT. In these cases, users are

requested to use multiple simpler expressions instead, for e.g. a = b + c and c = if(d>e,1,0)

16 For MATLAB SMT, the inputs to min and max functions should be givens before solving. The functions do not work if their

inputs are computed by solving other equations simultaneously.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 24

6.7 Aggregate Properties and Functions

ParaMagic
®

also supports aggregate value properties of type Real, that is, properties that contain a list of

one or more values of type Real.

6.7.1 Multiplicity

The default multiplicity for value properties is 1. In order to hold more than one value, the multiplicity of

the value property must be set to 1..* , 0..*, or * in the model schema.

6.7.2 Instance Slot Values

When setting up an instance for solution, values are assigned to slots for each variable—either real values

for given values or empty values as placeholders for unknowns. To add multiple values to a slot, create

the first value as normal in the Instance Specification window, then use the Plus icon at the bottom left of

the window to add additional values one at a time. Multiple empty slot values can be created in the same

way.

6.7.3 Aggregate Functions and Operators

The following function and operators are supported by ParaMagic
®

for aggregate values.

Some functions are not supported or have a limited support if OpenModelica (OM) is selected as the core

solver. These functions have comments in blue.

Function Explanation

y = a[2]
a is an aggregate of Real numbers and y is a single Real number;

y = second item in aggregate a;

parameterized indices not supported (a[i] not supported)

y = sum(a)
a is an aggregate of Real numbers and y is a single Real number;

y = a1 + a2 + a3 +…

y = avg(a)
a is an aggregate of Real numbers and y is a single Real number;

y = mean of a1, a2, a3,…

y = standarddeviation(a)
Not supported for OM

a is an aggregate of Real numbers and y is a single Real number;

y = standard deviation of a1, a2, a3,…

y = variance(a)
Not supported for OM

a is an aggregate of Real numbers and y is a single Real number;

y = variance of a1, a2, a3,…

y = min(a)
a is an aggregate of Real numbers and y is a single Real number;

y = minimum of a1, a2, a3,…

y = max(a)
a is an aggregate of Real numbers and y is a single Real number

y = maximum of a1, a2, a3,…

x = a
x and a are aggregates of Real numbers;

{x1, x2, x3,…} = {a1, a2, a3 …}. Note that the sizes of x and a must be same.

x = a + b
x, a, and b are aggregates of Real numbers;

{x1, x2, x3…} = {a1+b1, a2+b2, a3+b3 …}; similar syntax for other math operators

and functions. Note that the sizes of x, a, and b must be same.

x = sin(a)

x and a are aggregates of Real numbers;

{x1, x2, x3…} = {sin(a1), sin(a2), sin(a3) …}; similar syntax for other trigonometric,

exponential, logarithmic, and hyperbolic functions. Note that the sizes of x and a

must be same.

x = n
Not supported for OM

x is an aggregate of Real numbers and n is a single Real number;

{x1, x2, x3…} = {n,n,n…}.

x = a + n
Not supported for OM

x and a are aggregates of Real numbers, and n is a single Real number;

{x1, x2, x3…} = {a1+n, a2+n, a3+n…}; similar syntax for other math operators and

functions. Note that the sizes of x and a must be same.

x = pow(n,a) x and a are aggregates of Real numbers, and n is a single Real number;

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 25

Not supported for OM {x1, x2, x3…} = {n^a1,n ^a2,n^ a3 …}. Note that the sizes of x and a must be same.

For OpenModelica as the core solver, math expressions combining aggregates and single-valued variables

are not supported. For example, x = a + n, where x and a are aggregates and n is a single-valued variable

is not supported.

6.8 Complex Aggregate Relationships

ParaMagic
®

supports complex aggregate relationships. First, a short description of complex aggregates

and complex aggregate relationships is presented to better characterize this feature of ParaMagic
®
.

A primitive aggregate is a collection of primitive elements, such as real numbers, strings, integers, etc.

For example, in the relation a = avg(b), where a is a single-valued real number and b is an array of real

numbers, b is a primitive aggregate. Primitive aggregates are manifested in the SysML model when value

properties have multiplicity > 1. ParaMagic® currently supports several types of relations involving

primitive aggregates—see section 6.7 above.

A complex aggregate is a collection of blocks (in SysML context). Complex aggregates are manifested in

a SysML model when part/reference/shared properties of a block have multiplicity > 1. For example,

Figure 7 below illustrates a car system composed of several sub-systems, including the chassis sub-

system. The Chassis is composed of several components. The parametric diagram in Figure 8 illustrates

the relationship between the mass of the Chassis block and the masses of its components.

Figure 7: Car example to illustrate complex aggregates

The constraint relationship embodied in the massSum constraint property is an example of a complex

aggregate relationship. This is because one of the parameters in the relationship is tied to a value property

that is owned directly/indirectly by a complex aggregate (e.g. parameter b is tied to value property mass

owned by complex aggregate comps).

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 26

Figure 8: Parametric diagram illustrating the relationships between properties of the Chassis block (Figure 7)

In ParaMagic
®
, the depth of a complex aggregate relationship is defined as the maximum level of nesting

of the properties (owned by complex aggregates) constrained by that relationship. For example, the depth

of the complex aggregate relationship shown in Figure 8 above is equal to 1. The properties involved in

the relationship are mass and comps[i].mass. The level of nesting of mass is 0 while that of

comps[i].mass is 1. The level of nesting also corresponds to the number of complex aggregate part

boundaries crossed by the binding connector that ties the parameters of the relationship with the block

properties. For example, the connector e2 in Figure 8 crosses only 1 complex aggregate boundary (of

comps). Similarly, Figure 9 below illustrates a complex aggregate relationship (loadSum) with depth = 2.

As evident, the connector e2 crosses two complex aggregate part boundaries (floors and parkedCars). In

Figure 9 below, if the multiplicity of floors was changed to 1, then the connector e2 would cross only 1

complex aggregate part boundary (parkedCars). Hence, the depth of the complex aggregate relationship

would change from 2 to 1.

Figure 9: Parametric diagram illustrating a complex aggregate relationship of depth = 2.

ParaMagic
®

only supports execution of complex aggregate relationships with depth = 1. In general, the

parameters of the complex aggregate relationship (and the properties they are connected to) can be single-

valued or multi-valued (e.g. array). However, properties owned by complex aggregates and the

relationship parameters they are tied to should be single-valued. For example, in the complex aggregate

relationship illustrated in Figure 8, the property comps[i].mass is owned by the complex aggregate

comps. Hence, comps[i].mass and the parameter b to which it is connected should be single-valued (as

shown) for ParaMagic
®

to solve this relationship. Figure 10 below illustrates a complex aggregate

relationship (costCalc) with depth = 1. ParaMagic
®

can solve this relationship because the property

comps[i].mass owned by the complex aggregate comps is single-valued.

Figure 10: Parametric diagram illustrating a complex aggregate relationship with depth = 1.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 27

ParaMagic
®

does not directly support complex aggregate relationships that wrap MATLAB M-files

(section 8.3) or custom Mathematica functions (section 8.1). This is because it is required that the

parameters of the constraint properties wrapping MATLAB M-files (or custom Mathematica functions)

be bound to block (value) properties that are primitives—single-valued or aggregates. As a workaround to

this limitation, users can define an equality relation that transforms the single-valued primitive properties

owned by a complex aggregate to a property that is a primitive aggregate. Then, this property can be tied

to the parameters of the constraint property wrapping MATLAB M-files (or custom Mathematica

functions). Figure 11 below illustrates this workaround. If the properties ppA[i].vp1 and ppB[i].vp2 were

directly connected to the parameters input1 and output of the constraint property cp1 (that wraps

MATLAB M-file function), then the MATLAB relationship in cp1 could not have been executed. To

avoid this, two extra primitive aggregate properties vp1 and vp2 are created. Then, the equality relations

cp2 and cp3 are used to connect these primitive aggregates to the properties ppA[i].vp1 and ppB[i].vp2.

With this workaround, the MATLAB relationship in cp1 can be executed.

Figure 11: Workaround for complex aggregate relationships that wrap M-files or Mathematica functions.

In some models, complex aggregate relationships involve primitive aggregates in the scope of complex

aggregates. For example the parametric diagram below shows primitive aggregate A1, in the scope of

complex aggregate input, participating in four complex aggregate relationships. In such cases, it is useful

to have aggregate functions (e.g. min, max, avg, and sum) that can operate over primitive and complex

aggregates. ParaMagic
®
 provides this capability as shown in the table below. The model below shows

how the new functions (minca, maxca, avgca, and sumca) are used.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 28

Figure 12: Special aggregate functions (sumca, avgca, minca, maxca) for complex aggregates

Function Explanation

y = sum(input.x)

y and x primitive aggregates, and input is a complex aggregate

This is mathematically equivalent to: y[i] = ∑j (input[i].x[j]), i.e. summation is

performed over the primitive aggregate x.

y = sumca(input.x)

y and x primitive aggregates, and input is a complex aggregate

This is mathematically equivalent to: y[j] = ∑i (input[i].x[j]), i.e. summation is

performed over the complex aggregate input.

y = avg(input.x)

y and x primitive aggregates, and input is a complex aggregate

This is mathematically equivalent to: y[i] = avg j (input[i].x[j]), i.e. average is

performed over the primitive aggregate x.

y = avgca(input.x)

y and x primitive aggregates, and input is a complex aggregate

This is mathematically equivalent to: y[j] = avg i (input[i].x[j]), i.e. average is

performed over the complex aggregate input.

y = max(input.x)

y and x primitive aggregates, and input is a complex aggregate

This is mathematically equivalent to: y[i] = max j (input[i].x[j]), i.e. max is

performed over the primitive aggregate x.

y = maxca(input.x)

y and x primitive aggregates, and input is a complex aggregate

This is mathematically equivalent to: y[j] = max i (input[i].x[j]), i.e. max is

performed over the complex aggregate input.

y = min(input.x)

y and x primitive aggregates, and input is a complex aggregate

This is mathematically equivalent to: y[i] = min j (input[i].x[j]), i.e. min is

performed over the primitive aggregate x.

y = minca(input.x)

y and x primitive aggregates, and input is a complex aggregate

This is mathematically equivalent to: y[j] = min i (input[i].x[j]), i.e. min is

performed over the complex aggregate input.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 29

6.9 Recursion and Redefinition

Recursion and redefinition are powerful concepts for modeling variant system architectures. With

ParaMagic
®
, users can execute SysML parametric models involving redefinition and recursion to

compute and compare measures-of-effectiveness (and/or key performance parameters) for variant

architectures.

The VehicleMassRollup model included in ParaMagic
®
 intallation (under <MD

Root>\samples\ParaMagic\Other_Examples) is a SysML model of a vehicle system and demonstrates

how to model variant architectures using recursion and redefinition and execute the same using

ParaMagic
®
.

6.9.1 Recursion

Recursive Parametric Relationships are parametric constraints involving value properties of a block and

value properties of its part/reference/shared properties that are of the same type as the block itself. Figure

13 illustrates an example recursive parametric relationship. The Component block has a part property (sub

components) that is typed by the block itself—a component can have 0 or more sub components. The

Component block has a value property (mass) and a constraint property (mass rollup). As shown in the

parametric diagram in Figure 13, the mass rollup constraint relates the mass of a component with the

masses of its sub components—mass of a component is the sum of the masses of its sub-components.

Figure 13: SysML block definition and parametric diagrams illustrating a recursive parametric relationship

Once a recursive parametric relationship has been defined at the block level, they can be executed by

ParaMagic
®
 in a recursive manner at the instance level. Figure 14 illustrates an instance structure

conforming to the block structure shown in Figure 13. The System (instance of Component) is composed

of 3 subsystems (instances of Component) which are then composed of other components.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 30

Figure 14: Recursive parametric relationships can be executed in a recursive manner when ParaMagic® is

launched at any instance in the hierarchy.

When ParaMagic
®
 is launched for the top-level System instance, it executes the mass rollup recursive

parametric relationship across all levels in the instance model as shown in Figure 15. The total mass of

the System computes to 22 kgs.

Similarly, when ParaMagic
®
 is launched for the subsystem2 instance, it executes the mass rollup recursive

parametric relationship across all components in the context of subsystem2 (s2_1, s2_2, s2_1_1 and

s2_1_2), as shown in Figure 16. The total mass of subsystem2 computes to 7 kgs.

Setup and execution of Recursive Parametric Relationships is a powerful feature of ParaMagic
®
. It

provides a simple mechanism to model recursive constraints at the block level and execute them for

system alternatives with various topologies at the instance level.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 31

Figure 15: Executing recursive parametric relationship (mass rollup) for the System instance

Figure 16: Executing recursive parametric relationship (mass rollup) for the subsystem 2 instance

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 32

6.9.2 Redefinition

When building models of complex systems, generic concepts are successively specialized into several

concrete concepts using inheritance. It is then required that these concrete concepts redefine properties

and constraints inherited from generic concepts. Redefinition in SysML is the mechanism to achieve this.

ParaMagic
®
 provides the ability to detect and execute parametric relationships involving block

properties—such as value, part, reference, shared, or constraint—that have been redefined, either

implicitly or explicitly.

In explicit redefinition, the owned properties of a block redefine inherited properties by referencing them

in the SysML model—populating the redefined property field in the specification for an owned property.

The owned property and the inherited property can have different names. See section 6.9.2.1 for details.

In implicit redefinition, the owned property of a block redefines an inherited property by having the same

name as the inherited property. See section 6.9.2.2 for details.

6.9.2.1 Explicit Redefinition

Explicit redefinition is the recommended approach for redefining inherited properties in SysML. The

model shown in Figure 17 (BDD) illustrates explicit redefinition.

Block A has the following

properties: b (part property), c

(reference property), d (shared

property), n (contraint property),

and v (value property). The

parametric model for block A (top

left in Figure 18) shows how the

value properties owned by block A

and its part/reference/shared

properties are constrained (A.v =

b.vb + c.vc + d.vd).

Block Achild is a subtype of block

A and hence inherits all the

properties of block A. However,

Achild has its own part, reference,

shared, constraint, and value

properties that explicitly redefine

the corresponding inherited

properties. To achieve this, the

Redefined Property field for each

of the owned properties of Achild

(b1, c1, d1, n1, and v1) was

populated with the corresponding

inherited property (b, c, d, n, and v

respectively), as shown in Figure 19. As a result, the owned properties show the “redefine” keyword in

Figure 17. The parametric model for Achild in Figure 18 (see top-right) shows how the value properties

owned by block Achild and its part/reference/shared properties are constrained (Achild.v1 = c1.vc1 +

d1.vd1 – b1.vb1). Note how the constraint specification in the redefined constraint property (n1) is

different compared to the constraint specification in the inherited constraint property (n).

Figure 17: Explicit redefinition of inherited value, part, reference,

shared, and constraint properties

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 33

Similarly, the owned properties of block Agrandchild redefine the inherited properties b1, d1, n1. The

inherited property c1 is not redefined and hence used by Agrandchild. The parametric model for

Agrandchild in Figure 18 (bottom) shows how the properties of Agrandchild (redefined and inherited) are

constrained (Agrandchild.v2 = b2.vb2 * c1.vc1 * d2.vd2). Note how the constraint specification in the

redefined constraint property (n2) is different compared to the constraint specification in the inherited

constraint property (n1).

Figure 18: Parametric models for blocks A, Achild, and Agrandchild illustrating constraint relationships involving

owned properties that explicitly redefine inherited properties

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 34

Figure 19: Explicitly redefining properties in MagicDraw

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 35

Figure 20: Instance model in ready-to-solve state

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 36

Figure 20 shows instances A01 (of

block A), A02 (of block Achild), and

A03 (of block Agrandchild) in a ready-

to-solve state. The ParaMagic
®
 browser

shows the same instances in a solved

state in Figure 21, Figure 22, and Figure

23 respectively. Note that the

ParaMagic
®
 browser shows the

redefined constraint properties for

instances A02 and A03—see the

equation section (lower part) in the

browser in Figure 22 and Figure 23. The

target slots (A01.v, A02.v1, and

A03.v2) in the ParaMagic
®
 browsers

show the result of executing the

parametric models for instances A01,

A02, and A03 respectively.

Figure 21: Solved instance A01

Figure 22: Solved instance A02

Figure 23: Solved instance A03

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 37

6.9.2.2 Implicit Redefinition

Implicit redefinition is an alternative approach to redefining (overriding) inherited properties. The model

shown in Figure 24 (BDD) illustrates implicit redefinition.

This model is similar to the

model shown in Figure 17

and described in the

previous section except that

Achild and Agrandchild

have part, reference, shared,

constraint, and value

properties that override the

inherited properties by

having the same names. For

example, Achild has an

owned part property b that

overrides the inherited part

property (A.b) because it

has the same name. The

same pattern is used by

Agrandchild for redefining

properties inherited from

Achild.

Though this method of

using a name conflict to

redefine inherited properties

is easy to use since it does

not require explicitly

referencing the inherited

property (as shown in

Figure 19), it is ambiguous and not recommended due to poor model readability. However, ParaMagic
®

can treat name conflicts between owned and inherited properties as a form of redefinition and can execute

models the same way as shown for explicit redefinition in the previous section.

Figure 25 illustrates the parameteric models for blocks A, Achild, and Agrandchild. The parametric

models are setup in the same manner as those in Figure 18. The parametric models for blocks A and

Achild have constraint relationships between their owned properties. The owned properties of block

Achild implicitly redefine the properties inherited from block A because they have the same names. The

parametric model for the block Agrandchild has a constraint relationship (n) between its owned properties

(Agrandchild.b, Agrandchild.d, and Agrandchild.n) and an inherited property (Achild.c).

Figure 24: Implicit redefinition of inherited value, part, reference, shared, and

constraint properties

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 38

Figure 25: Parametric models for blocks A, Achild, and Agrandchild illustrating constraint relationships involving

owned properties that implicitly redefine inherited properties

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 39

Figure 26: Instance model in ready-to-solve state

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 40

Figure 26 shows instances A01 (of blocs

A), A02 (of block Achild), and A03 (of

block Agrandchild) in a ready-to-solve

state. The ParaMagic
®
 browser shows

the same instances in a solved state in

Figure 27, Figure 28, and Figure 29

respectively. Note that the ParaMagic
®

browser shows the redefined constraint

properties for instances A02 and A03 in

the equation section (bottom part) of

Figure 28 and Figure 29 respectively.

The target slots (A01.v, A02.v, and

A03.v) in the three ParaMagic
®

browsers show the result of executing

the parametric models for instances

A01, A02, and A03.

Figure 27: Solved instance A01

Figure 28: Solved instance A02

Figure 29: Solved instance A03

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 41

6.10 Limitations

ParaMagic
®

18.0 has the following limitations with respect to SysML models. Several of these are

limitations of the core solvers.

1) OpenModelica (OM) as the core solver – If OM is selected as the core solver, the following

limitations exist:

a) For OM, the number of parametric relations should be equal to the number of unknown variables

(value properties).

b) Some math functions are not supported or have a limited support if OM is selected as the core

solver. These functions are commented in blue in sections 6.5, 6.6, and 0.

c) ParaMagic – Custom Mathematica Connection (section 8.1) is not supported

d) ParaMagic – MATLAB Connection (section 8.3) is not supported

2) MATLAB Symbolic Math Toolbox (SMT) as the core solver – If MATLAB SMT is selected as the

core solver, the following limitations exist:

a) For SMT, the number of parametric relations should be equal to the number of unknown variables

(value properties).

b) Some math functions have a limited support as commented in red in sections 6.5-6.7.

c) Conditional expressions do not work reliably when combined with other expressions. For e.g. a =

b + if(d>e, 1, 0) will not work with MATLAB SMT. In these cases, users are requested to use

multiple simpler expressions instead, for e.g. a = b + c and c = if(d>e,1,0)

d) Inputs to min and max functions should be givens before solving. The functions do not work if

their inputs are computed by solving other equations simultaneously.

e) ParaMagic – Custom Mathematica Connection (section 8.1) is not supported

3) Constraint block-related limitations - This version of ParaMagic
®

does not support:

a) multiple constraint specifications in a constraint block.

b) constraint blocks composed of other constraint blocks.

c) inequality constraints.

4) Cyclic references-related limitations - This version of ParaMagic
®

does not support some types of

cyclic references among model instance elements. Specifically, the following scenarios are not

supported:

a) A block instance has a slot that it is populated with the instance itself, i.e. the instance points to

itself.

b) Given two block instances, each has a slot that is populated with the other instance. For e.g.

instance A points to instance B, and instance B points to instance A.

Note that a block may have a property typed by the block itself. This looping structure at the block

level is supported if there is no looping at the instance level.

5) Value Types, Value Specification, and Causality

a) See section 6.4 for requirements on value properties that can participate in parametric relations.

b) ParaMagic
®
 treats all numbers as real numbers.

c) Values populating instance slots must be one of the following types: LiteralString, LiteralReal, or

LiteralInteger.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 42

d) Slots corresponding to value properties that are typed by Integer (or its subtype) should have

causality “given”, i.e. they can only be inputs to parametric calculations. ParaMagic
®
 treats

integers (only allowed as inputs) as real numbers during solving.

e) ParaMagic
®

does not perform automated unit conversions in math expressions. Thus, instance

validation and solution do not check for the consistency of units. Users must provide instance

values with consistent units.

6) If the value property corresponding to a slot is connected to the outputs of multiple ONEWAY

relations, then the slot must have causality “given”. This restriction is imposed to prevent instance

models from being over-constrained—conflicting values of such slots may be computed from the

different ONEWAY relations.

7) Complex numbers – This version of ParaMagic
®

does not support complex numbers. If solution

results return a complex number for a variable, a string No Value is displayed for that variable in the

ParaMagic
®

browser.

8) Complex Aggregate Relationships – The following limitations exist for complex aggregate

relationships in ParaMagic
®
. See section 6.8 for details.

a) Only complex aggregate relationships with depth = 1 are supported.

b) Constraint blocks that wrap a MATLAB M-file or a custom Mathematica function cannot be used

directly with complex aggregates for some cases. See section 6.8 for details on a workaround for

this limitation.

9) This version of ParaMagic
®

does not support scientific notation for numbers.

10) If you change the causality of a solved target variable to given in MagicDraw and launch the

ParaMagic
®

browser, you may see an over-constrained set of values. ParaMagic
®

does not check for

over-constrained instance values during validation. To resolve such states, users should identify a new

target variable and re-solve the model.

11) When you successfully validate the schema structure of a model (see Validate in section 7.1), you

will receive the message in Figure 30.

a) The warning is to inform you that this validation function effectively checks the syntax and

connectivity of the structure of your SysML model schema as far as parametrics solving goes.

b) At this stage ParaMagic
®

does not check for over-constrained equations and similar non-syntactic

issues. In general the math solver that you can later invoke via the ParaMagic
®

Browser will

uncover such issues (usually by returning a “No Value” result or an over-constraint warning.

12) When you successfully validate the instance structure of a model (see Validate in section 7.1), you

will receive the message in Figure 31.

a) The warning is to inform you that this validation function effectively checks the syntax and

connectivity of the structure of your SysML model instance as far as parametrics solving goes.

b) ParaMagic
®

does not check for over-constrained values or inconsistent causalities and similar

non-syntactic issues at the instance validation stage. Such issues will be uncovered during the

instance solution stage, usually by returning a No Value result (in the ParaMagic® browser) or an

over-constraint warning.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 43

Figure 30: Structure validation notice Figure 31: Instance validation notice

13) When you open an existing instance from MagicDraw for browsing (see Browse in section 7.1) you

will see the warning message in Figure 32 if that instance has values for any attribute with causality

“target” or “ancillary”.

a) This situation exists because you have stored previously solved values in the SysML model.

Usually it is not a problem and you can browse the instance to review its results without concern

(if you fully control the model and know its change history), but in general we recommend re-

setting the instance and re-solving it to be safe.

b) There are several ways that previously solved instance values can become invalid (because the

instance in MagicDraw is not continuously connected to the instance in the ParaMagic
®

browser),

including:

i) Someone changed the corresponding schema structure in MagicDraw after that instance was

solved (e.g., they added a new equation or changed an existing equation).

ii) Someone changed an attribute value or an attribute causality in the instance in MagicDraw.

In general we recommend not making such changes in MagicDraw for a previously solved

instance. Instead, open the ParaMagic
®

browser and then make such changes.

In other words, for example if you make structural changes to your SysML model schema, such

as redrawing the connectors in a parametric diagram, you can still browse the old solved instance

(conforming to the schema before changes) in ParaMagic
®
. With the changes in the model, the

values in old instances may be non-conformant to the model schema. This version of ParaMagic
®

does not automatically re-solve (update) old instances to conform with the new schema. It is

recommended that after structural changes to the model schema, users should (a) re-validate the

schema, (b) open the ParaMagic
®

browser, (c) Reset all non-given values (automatically by

pressing the Reset button), and (d) solve the instance again.

Figure 32: Warning regarding previously solved instance values.

14) Mathematica solving issues:

a) If a system of equations is under-constrained, ParaMagic
®
 browser shows that no value is

available for one or more target variables after solving. It does not explicitly warn the user that

the system of equations was under-constrained.

b) In some cases, while solving a large system of equations in the reverse direction (non-natural

direction), Mathematica returns an over-constrained set of values (without exceptions or

warnings). Contact us (support@intercax.com) for further information.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 44

77 PPRROOGGRRAAMM FFEEAATTUURREESS

7.1 Command Menus

ParaMagic
®

commands are applied by right-mouse-clicking on the appropriate block or package in the

MagicDraw containment tree and selecting the menu item ParaMagic.

Command Description
Validate When applied to a block, it validates the block structure. Block structure

refers to the block itself and all its properties recursively (e.g. parts of

parts).
Browse When applied to an instance, it validates the instance structure and

launches the ParaMagic® browser for that instance structure. Here

instance structure refers to the instance itself and all its slots

recursively.

 When applied to a package for which a default instance has been set,

it validates the default instance and launches the ParaMagic®

browser

(same as above).
Util >
Assign default causalities

 When applied to an instance, it assigns default causality to each

variable (slot) in the instance structure. Here instance structure refers

to the instance itself and all its slots recursively. Variables that have

value(s) are assigned causality given, and variables without value(s)

are assigned causality undefined. At least one variable must be

assigned manually as target to solve the model.

 When applied to a package, it assigns default causality to all instances

(and their related instances) in the package.
Util >
Set default instance

When applied to an instance, it assigns that instance as the default

instance for the package owning that instance. Once assigned, users can

browse the instance (launch the ParaMagic
®
 browser) from the package.

Util > Convert Connector to
Binding Connector

When applied to a connector (listed in Relations under a SysML Block), it

converts the connector to a binding connector. When using MagicDraw, it

is possible for users to accidently create connectors instead of binding

connectors on a parametric diagram. ParaMagic
®
 only reads binding

connectors in a parametric model as per the SysML specification. This

utility helps users to upgrade a connector to a binding connector.
Util > Silent > Solve

When applied to an instance, it solves the parametric model in the context

of that instance, and writes out the results to the ParaMagic
®
 Silent Target

log file (see section 7.4) without launching the ParaMagic
®
 browser. This

action is the same as launching the ParaMagic
®
 browser (Browse

command) on an instance and then pressing the Solve button.
Util > Silent > Solve and
Update

When applied to an instance, it has the same behavior as Util > Silent >

Solve command (above) plus it also updates the SysML instance model

with the solved results. This action is the same as launching the

ParaMagic
®
 browser (Browse command) on an instance, pressing the

Solve button, and then pressing the Update to SysML button after solving

completes.
Excel > Setup When applied to an instance, it launches the Excel setup utility to connect

instances to Excel spreadsheets. This connection is used to read/write

values from/to spreadsheets to/from SysML instance models. See section

8.2.2 for details.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 45

Excel > Read from Excel When launched on a slot/instance/package, it reads values from

connected Excel spreadsheet(s) into the instance slots. See the table at the

end of Step 6 in section 8.2.2.1.
Excel > Write to Excel When launched on a slot/instance/package, it writes values from instance

slots to the connected Excel spreadsheets. See the table at the end of Step

6 in section 8.2.2.1.
Excel > Create Instances
from Excel

When applied to a block, it launches ParaMagic® instance generation

utility which is used to generate instances of the block based on tabulated

data in Excel spreadsheet(s). See section 8.2.1 for details.
Trade Study > Setup When applied to an instance, it launches the trade study setup utility.

 When applied to a package for which a default instance has been set, it

launches the trade study setup utility for the default instance.
Trade Study > Run When applied to an instance, it runs the trade study

 When applied to a package for which a default instance has been set, it

runs the trade study for that default instance.
Help > Users Guide When applied to any model element, it launches the ParaMagic

®
 User

Guide, located at <MD_Root>\manual\ParaMagic Plugin UserGuide.pdf.

The User Guide is also accessible via MagicDraw Help > Other

Documentation > ParaMagic Plugin UserGuide
Help > Tutorials When applied to any model element, it launches the ParaMagic

®
 tutorials

folder, located at <MD_Root>\samples\ParaMagic\Tutorials

7.2 Browser

The ParaMagic
®

plugin browser displays the parametric model variables and controls for solving and

displaying the variable values. An example of the browser window is shown in Figure 33 below. The

ParaMagic
®
 browser displays properties in the following order—value, part, shared, and reference.

The ParaMagic
®
 browser only displays slots whose corresponding value properties are typed by Real,

Integer, String, or a value type representing a quantity, and their subtypes. For more details, refer to

section 6.4.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 46

Variable Browser

(shown in expanded

form)

Toolbar

Relationship Browser

7.2.1 "Solution in progress" Window

When the Solve button on the browser is clicked, a network of parametric equations is constructed and

solved using Mathematica / PlayerPro / OpenModelica / MATLAB SMT. ParaMagic
®
 waits for the

results to be returned. During this interval, a Solution in progress window is displayed, as shown in

Figure 34 below.

Figure 34: Solution in progress window when using Mathematica / PlayerPro

The Cancel button causes ParaMagic
®
 to ignore any intermediate results returned from the solvers, to

reset the model values (same as pushing Reset), and to return to the ready-to-solve condition. It does not

necessarily affect the solver directly (i.e., the solver job may continue to execute, in which case

Figure 33: Browser window

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 47

ParaMagic
®
 will ignore any results it obtains). If the solver job itself hangs, it may require manual

intervention before you can continue solving models via ParaMagic
®
.

7.2.2 Variable Browser

Each variable is shown with Name, Type, Causality and Value. Variable causality can be changed in the

browser window by clicking on the causality type and selecting from the list. Four possibilities are

available for Causality. A user can only specify causality to be Given, Undefined, or Target. If a variable

with initial causality Undefined is used to compute other variables with during solution, its causality will

automatically change to Ancillary after solving.

Command Description
Given Value is assigned before solving
Undefined Value may be calculated during solving if it is needed to determine a Target, directly or

indirectly.
Target Value is calculated during solving (if Mathematica can find a valid solution). At least

one unknown must be assigned as a target variable to initiate the solution process.
Ancillary A variable whose value is calculated during solving and used to calculate the value of

another variable. The value of this variable is not available before solving.

The value of a Given variable can be changed by clicking on its value and editing it. All other variables

must be changed to Given before they can be edited (see 7.2.5 for more about this).

The size of the Variable Browser window may be expanded by 1) dragging down the lower border of the

Browser window, followed by 2) dragging down the horizontal black line between the Toolbar and

Relationship Browser.

7.2.3 Toolbar

Command Description
Expand Expands all blocks in the variable browser one tree level per button click
Collapse All Fully collapses the tree structure of the variable browser
Reset Resets the values of all target and ancillary variables in a solved instance, and

changes the causality of ancillary variables to undefined
Solve Exports the model to Mathematica for execution and displays the results in the

Browser window after solving is complete
Update to SysML Causes the results in the Browser window to be exported to the SysML instance

in MagicDraw

7.2.4 Relationship Browser

The Relationship Browser displays the constraint equations present in the parametric model and shows

their current status during solution. By selecting one of the blocks in the Variable Browser (e.g.

LittleAircraft in XFigure 33), the equations specific to that part of the model are displayed in the

Relationship Browser.

The checkbox in the Active column allows individual equations to be “turned off” during solving, i.e. not

exported to Mathematica. This may prevent other parts of the parametric model from being solved.

The columns Local and Oneway refer to local vs. inherited characteristics and static causality

characteristics of the equations. These are not user-controlled via this browser—they are determined by

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 48

the structure of the model, which the user can change in MagicDraw and then re-open in the ParaMagic
®

browser to see the updated Local or Oneway properties.

7.2.5 Editing an Instance in the Browser Window

Attribute values and attribute causalities can be modified within the Browser window, as well as in the

SysML instance diagram before launching the browser. Note that editing the SysML instance after the

Browser is launched will not update the Browser. Changing either a value or causality in the Browser

after a solution has been calculated will return the model to an unsolved state, which can then be solved

with the changed parameters.

In ParaMagic®, users can select the max number of decimal places to display in the browser. This can be

done by specifying the value of maxNumberOfDecimalsToDisplay variable in the ParaMagic.ini file. See

section 7.3 below for details. When a user points the mouse cursor over the displayed value, the browser

will indicate the true value of the variable. If a user double-clicks on value with causality= “given”, the

true value will be displayed in the edit box.

Figure 35: Hover the mouse pointer over the displayed value to see the true value.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 49

7.3 ParaMagic® Settings

The ParaMagic
®
 Settings menu provides the capability to set variables that control ParaMagic

®
 behavior.

The ParaMagic
®
 Settings menu can be launched from MagicDraw by selecting Options > Environment,

and then selecting ParaMagic Settings, as shown in Figure 36 below.

Figure 36: ParaMagic

®
 Settings Menu

If you select a variable you will see a short description of that variable, as shown in Figure 36 above. The

function of each setting/variable is described below.

Core solver and other settings

1. Core Solver – This variable is used to select the core solver. Options are Mathematica / PlayerPro,

OpenModelica, or MATLAB Symbolic Math Toolbox (SMT).

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 50

2. Working Directory – This variable is used to specify the working directory for ParaMagic
®
. This

directory is used by ParaMagic
®
 to save temporary files during the solving process. If the field is

empty, ParaMagic
®

uses the default location which is a temp folder insider the ParaMagic
®
 Working

Folder (see section 7.4), such as the following on Windows 7.
<Your user dir>\AppData\Local\.magicdraw\18.0\plugins\com.intercax.paramagic\temp

Note: If you are using OpenModelica as the core solver, ensure that the working directory field does

not have any spaces.

3. Solver Timeout - This variable is used to specify the time interval in seconds—measured after

pressing the Solve button in the ParaMagic
®

browser—after which ParaMagic
®

will disconnect from

the external solver (e.g. Mathematica / PlayerPro / MATLAB). Note that this will not kill the solver

runtime process. However, ParaMagic
®

will not wait for the solution results. By default, the value of

this variable is set to -1 which indicates no timeout.

4. MATLAB M-File Default Location - This variable is used to specify the default location of

MATLAB M-files (functions or scripts) when using the ParaMagic-MATLAB Connection capability

(see section 8.3). Though the location of MATLAB M-files can be specified for each constraint block

wrapping the file, it is sometimes useful to specify a default location. ParaMagic
®
 checks if the

location of the M-file is specified in the constraint block. If not, ParaMagic
®
 will check for the M-file

in the default location specified here.

5. Browser Display Precision - This variable is used to specify the max number of decimal places to

display for values in the ParaMagic
®
 browser. If the default value (-1) is specified, location-specific

default settings will be used, for e.g. displaying 3 decimal places in US.

6. Show Stats – When this variable is set to true, ParaMagic
®
 will show statistics about the parametric

model (during validation/execution) in the MagicDraw message window.

7. Mathematica Kernel - This is the location of the MathKernel executable file that comes with

Mathematica or Player Pro. This path is needed only for Windows and Mac operating systems. For

help setting this path correctly, refer to the Installation section (Step 3a in section 4.2). This field is

only used if Core Solver is set to Mathematica / Player Pro and if Use Local Solver is set to true.

8. Log Message Level - This setting allows users to control the verbosity of log messages displayed in

the MagicDraw Message (Console) Window when using ParaMagic
®
. The default verbosity is

WARNING, i.e. all messages with severity of warning or above (such as error) will be shown.

Local vs. Remote core solver

9. Use Local Solver - This variable is used to specify if ParaMagic
TM

 should use local or remote solver.

In the current version of ParaMagic®, this setting applies only to Mathematica. If set to true,

ParaMagic® will use Mathematica installed on the user’s machine. If set to false, ParaMagic® will

use the Mathematica server available remotely.

10. Remote Solver – Host URL –This variable is used to specify the location of remote Mathematica

server (if Use Local Solver variable is set to true above). Values are specified in the following format:

IP number (or alias): port number.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 51

11. Remote Solver – Access Key - This variable is used to specify the access key for the remote

Mathematica server (if Use Local Solver variable is set to true above).

12. Remote Solver – Retry Limit - This variable is used to specify the number of times ParaMagic®

will retry connecting to the remote Mathematica server if it is unable to connect to the server in the

first try (e.g. due to network issues). This value is used only if Use Local Solver is set to true.

13. Remote Solver – Time between Retries – This variable is used to specify the time interval (in

milliseconds) after which ParaMagic® will retry connecting to the Mathematica server if it is unable

to connect to the server in the first try (e.g. due to network issues). This value is used only if Use

Local Solver is set to true.

Mac and Linux-specific settings – These settings are applicable only when using ParaMagic
®
 on Mac or

Linux operating systems.

14. OpenModelica Installation Location – This variable is used to indicate the location of

OpenModelica (omc file) on Mac OS X, for e.g. /opt/openmodelica/bin/omc. This variable is used

only if the core solver is set to OpenModelica. This variable does not need to be set for Linux.

15. MATLAB Installation Location – This variable is used to set the location of MATLAB executable

(matlab file) on Mac or Linux, e.g. /Applications/MATLAB_R2014a.app/bin/matlab. If you are using

MATLAB on 32-bit Mac platform, then append the location with “ –maci”, e.g.
/Applications/MATLAB_R2014a.app/bin/matlab -maci

7.4 ParaMagic® Working Folder

During operation, ParaMagic
®
 saves working files for models in the same location as MagicDraw

working folder. Example locations for Windows and Mac are provided below.

 On Windows 7, this location is:

<Your user dir>\AppData\Local\.magicdraw\18.0\plugins\com.intercax.paramagic, such as
C:\Users\InterCAX\AppData\Local\.magicdraw\18.0\plugins\com.intercax.paramagic

 On Mac OS X, this location is:

<Your user dir>/.magicdraw/18.0/plugins/com.intercax.paramagic, such as

/Users/InterCAX/.magicdraw/18.0/plugins/com.intercax.paramagic

The ParaMagic
®
 Working Folder includes a temp folder that stores files created by ParaMagic

®
 when

solving parametric models. It also includes the paramagic_silent and paramagic_silent_targets log files

that are created when using ParaMagic
®
 Silent feature (section 10). The ParaMagic.ini file located here

should never be edited manually.

Figure 37: ParaMagic

®
 Working Folder

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 52

88 CCOONNNNEECCTTIIOONNSS TTOO EEXXTTEERRNNAALL TTOOOOLLSS

8.1 ParaMagic - Custom Mathematica Connection

The ParaMagic - Custom Mathematica connection (a.k.a cMathematica) exposes full power of

Mathematica to ParaMagic users through the cMathematica function. This allows “wrapping” of both

pre-defined and user-written Mathematica functions—saved as .m files in the Mathematica Autoload

folder—as constraint blocks. Nine pre-defined graphing functions and three statistical functions are

included with ParaMagic
TM

. The user can create as many custom functions as desired if he or she has

familiarity with Mathematica function programming and access to the Mathematica directory structure.

The canonical form of the constraint expression is:

output parameter = cMathematica(function name, input arguments)

and would be used in a parametric diagram as shown in Figure 38.

Figure 38: Constraint Expression using cMathematica Function in Parametric Diagram

The Orbital tutorial provided with ParaMagic
TM

 demonstrates an example usage of a graphing function

provided by cMathematica feature. It is located under
<MD_Root>\samples\ParaMagic\Tutorials\Orbital.

This feature is not supported if OpenModelica or MATLAB SMT is selected as the core solver.

8.1.1 Installation

A library of pre-defined Mathematica graphing and statistical functions is provided with ParaMagic®

16.9. After ParaMagic
TM

 installation, this library is located here:

<MD_Root>\plugins\com.intercax.paramagic\xfw\conf\ICAX.zip. If you are using local Mathematica,

right click on the ICAX.zip file and extract it to <Your Mathematica Installation>\SystemFiles\Autoload

folder. For example, if you have local Mathematica version 7.0 on your Windows machine, extract

ICAX.zip to C:\Program Files\Wolfram Research\Mathematica\7.0\SystemFiles\Autoload. If you are

using XWS-based Mathematica, ask your system administrator to extract ICAX.zip to your Mathematica

server installation. If you are evaluating ParaMagic
TM

 and using our test server xws.magicdraw.com, then

you do not need to follow the steps above. The library is already extracted in the Mathematica installation

at xws.magicdraw.com and ready for you to evaluate.

Note: After extracting ICAX.zip file to C:\Program Files\Wolfram

Research\Mathematica\7.0\SystemFiles\Autoload folder, verify that the Autoload folder has an ICAX

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 53

folder and Mathematica .m files inside the ICAX folder. There should not be an ICAX folder inside the

ICAX folder.

8.1.2 Usage

Tutorial 6 (Orbital) in the ParaMagic tutorials describes the process of using the pre-defined graphical and

statistical Mathematica functions (sections 8.1.3 and 8.1.4 below). See section 6.2, Step IV, in ParaMagic

Tutorials document for details. Note that the ParaMagic Constraint Block Library package—loaded with

the ParaMagic Profile—has a generic cMathematica_Function constraint block that can be copied (in

your package) and used in the manner described in Tutorial 6.

ParaMagic
TM

 allows users to specify the location of the plots created by the Mathematica graphing

functions. The location can be specified for each constraint block that wraps a Mathematica function. The

tag working_dir (owned by the stereotype External_Model) is populated for the constraint specification in

the constraint block to specify the location—also described in Tutorial 6. The behavior of ParaMagic with

respect to the working_dir tag is as below:

1) If the tag working_dir is populated and

a) the folder location exists, ParaMagic
®
 will pass the location as the first argument to the

Mathematica function.

b) the folder location does not exist, ParaMagic
®
 will show an error message to the user.

2) If the tag working_dir is not populated, ParaMagic
TM

 will not pass the location to the Mathematica

function. Therefore, the invoked Mathematica function should not expect its first argument to be the

folder location.

Note that the working_dir tag is used to pass the location of a folder to a Mathematica function. This

folder can be used for exporting plots or other forms of outputs (e.g. .txt or .csv files with the results).

Both input and output parameters of the constraint block wrapping the cMathematica function can be

single-valued or multi-valued (e.g. an array of real number) but not a complex data structure (e.g. multi-

dimensional arrays).

8.1.3 Graphing Functions

Nine pre-defined graphing functions have been created to provide quick access to some of the two-

dimensional plotting functions in Mathematica. In the interests of simplicity, the flexibility of these pre-

defined functions is limited. Users familiar with Mathematica function programming may want to create

their own routines.

These nine functions have several common features:

 When executed, each function creates and saves a plot file with a fixed name to a location specified

by the user. Calling the function a second time will over-write the first file. The location of the plot

file is specified in the constraint block used in the model.

 Each function returns a single parameter (single value real) to ParaMagic
TM

 on completion of the

function, with a value of 1.

 The input arguments can include numeric data, expressed as real single value or aggregate data, and

strings which appear as labels on the plot. The strings cannot be entered as variables (constraint

parameters); they must be explicitly fixed in the constraint specification.

 Blank spaces are not allowed in the names of the output and the input parameters of the cMathematica

function.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 54

 In the following table, Title will be displayed as the title of the graph, XAxis will be displayed as the

horizontal axis label and YAxis will be displayed as vertical axis label. Strings must be enclosed in

quotes, e.g. “Power_versus_Time”. Since plot and axes labels are also input arguments to the

cMathematica function, blank spaces are not allowed. For example, if the plot title is “Power versus

Time”, ParaMagic
TM

 will throw an instance parsing error.

 It is frequently convenient to create a hyperlink in the MagicDraw model pointing to the output file

created. For model portability, it is recommended to define the hyperlinked location relative to the

MagicDraw installation. You may use <install.root> to refer to your MagicDraw installation. For

example, <install.root>\plugins\com.intercax.paramagic\xfw\conf\PlotXY.jpg will automatically

resolve to the plot file location.

Note: If you are using PlayerPro as the core solver, you will be prompted for a front-end program when

solving parametric models that use these graphing functions. When prompted, select the

WolframPlayerPro executable file on your computer. This is the main program located in your PlayerPro

installation, e.g. C:\Program Files\Wolfram Research\Wolfram Player Pro\9.0\WolframPlayerPro.exe

Function Output Description

ICAXPlotX PlotX.jpg
Plots a line graph of the x values vs. {1,2,3,…}
z =cMathematica(ICAXPlotX,x,”Title”, “XAxis”, “YAxis”)

ICAXPlotXT LinePlotXT.jpg
Plots a line graph of x vs. t values
Z =cMathematica(ICAXPlotXT,t,x,”Title”, “XAxis”,
“YAxis”)

ICAXPlotXY LinePlotXY.jpg
Plots a two line graph of x and y values vs. {1,2,3,…}
Z =cMathematica(ICAXPlotXY,x,y,”Title”,

“XAxis”,“YAxis”)

ICAXPlotXYT LinePlotXYT.jpg
Plots a two line graph of x and y values vs. t values
z =cMathematica(ICAXPlotXYT,t,x,y,”Title”, “XAxis”,
“YAxis”)

ICAXPlotXYScatter ScatterPlotXY.jpg
Plots a scatter plot of y vs. x values
z =cMathematica(ICAXPlotXYScatter,x,y,”Title”, “XAxis”,
 “YAxis”)

ICAXBarChartX BarChartX.jpg
Plots a bar chart of the x values vs. {1,2,3,…}
z =cMathematica(ICAXBarChartX,x,”Title”, “XAxis”,
“YAxis”)

ICAXBarChartXY BarChartXY.jpg
Plots a double bar chart of x and y values vs. {1,2,3,…}
z =cMathematica(ICAXBarChartXY,x,y,”Title”, “XAxis”,
“YAxis”)

ICAXPieChartX PieChartX.jpg
Plots a pie chart of the x values vs. {1,2,3,…}
z =cMathematica(ICAXPieChartX,x,”Title”)

ICAXHistogramX HistogramChartX.jpg
Plots a histogram of the x values vs. {1,2,3,…}
z =cMathematica(ICAXHistogramX,x,”Title”,“XAxis”,
“YAxis”)

8.1.4 Statistical Functions

Three pre-defined statistical functions have been created to provide quick access to some of the statistical

power of Mathematica.

Function Description

ProbDistFnBinom

Returns the probability distribution function for outcome k in a binomial

distribution of n trials and success probability p (k and n integers)

c =cMathematica(ProbDistFnBinom,n,p,k)

ProbDistFnNorm
Returns the probability distribution function for value x in a normal

distribution with mean m and standard deviation s

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 55

c =cMathematica(ProbDistFnNorm,x,m,s)

ProbDistFnPois

Returns the probability distribution function for value k in a Poisson

distribution with mean m (k integer)

c =cMathematica(ProbDistFnPois,m,k)

8.1.5 User-Defined Mathematical Functions

A user familiar with Mathematica function programming can easily create and use custom Mathematica

functions within SysML parametric diagrams with the cMathematica capability. There are two ways to

creating custom functions, using one of the five preset UserfnN.m functions (where N runs from 1 to 5)

or creating a new function using one of the existing pre-defined functions as a template for compatibility

with ParaMagic.

8.1.6 UserfnN.m

Within the ICAX library with the pre-defined graphing and statistical functions, we have provided five

“empty” functions. Each one can be edited using Mathematica or any standard text editor. Replace the

comment lines

(* :Add Mathematica code calculating output b from inputs t and m *)
(* :To save graph, Export["GraphFileName", GraphFunction[arguments]] *)

with valid Mathematica code, which will be executed when the function is called.

Note that only two input arguments are defined in the function definition. This number can be reduced or

increased with appropriate modification of the template. Output and input parameters can be single-

valued or multi-valued (e.g. array).

8.1.7 Custom Functions

The user can write his/her own Mathematica functions using the cMathematica capability. We

recommend using one of the pre-defined functions as a template to insure compatibility with ParaMagic.

In order for a function to be recognized by Mathematica, it must be autoloaded on start-up. See the

Mathematica user documentation for discussion on declaring and loading functions. One easy way to

accomplish this is to

 Save the new .m file in <Mathematica installation directory>\SystemFiles\Autoload\ICAX

 Edit the Master.m and Kernel\init.m files in the ICAX folder to declare the new function. Add the

lines

DeclarePackage["ICAX`NewFunctionName`", {"NewFunctionName"}]

 to each of these files and save, where NewFunctionName is the name of the new function, without the

.m extension.

8.2 ParaMagic - Excel Connection

The ParaMagic - Excel Connection (PM-EC) allows users to perform two key functions:

 Generate / Update SysML instance model structure from Excel spreadsheets

 Read/Write instance slot values from/to Excel spreadsheets.

This enables users to quickly generate topologically variant system architectures (as instance models),

perform parametric analyses on these architectures, and export results for plotting and presentation to

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 56

spreadsheets. In section 8.2.1 the capability to generate instance models from Excel spreadsheets is

presented, and in section 8.2.2 the capability read/write instance slot values from/to Excel spreadsheets is

presented.

8.2.1 Generate/Update SysML Instance Model Structure from Excel
Spreadsheets

In this section, we present a step-by-step process for generating SysML instances from Excel

spreadsheets. For simplicity, we will first describe the process for primitive blocks and then for complex

blocks. A primitive block is one that has no part/reference/shared properties. These blocks represent the

leaf-level systems/parts in a system hierarchy. A complex block is one that has part/reference/shared

properties.

8.2.1.1 Creating instances of a primitive block

1. Suppose you have a table of Control system instances (alternatives) in Excel spreadsheet as shown

below. The columns represent properties of the Control system. This table may have been developed

independently of the SysML model, so the names of properties (e.g. Power and Weight) may not

correspond to the property names in the SysML model and the table may have more columns than

required/relevant for SysML instances.

2. Now suppose you have a primitive block (e.g. Control) in the SysML model with value properties

Pcon and Wcon. The block may have been defined in the SysML model or defined in a separate

model that is imported as module (library), as shown below in Figure 40.

Figure 39: Example spreadsheet with instances of Control system

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 57

3. Import the ParaMagic profile into your model if it is not imported already. To import the profile, go

to File > Use Module in MagicDraw, select <install.root>\profiles, select ParaMagic Profile (as shown

below), and then press the Finish button.

4. To generate instances of the Control block from the table in the spreadsheet, right click on the Control

block in the MagicDraw Containment tree and select ParaMagic > Excel > Create Instances from

Excel. You will see the ParaMagic instance creation utility, as shown below.

Figure 40: Control block in the SysML model

Figure 41: Import the ParaMagic Profile

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 58

5. In Step 1, press the Browse button to select an existing package for instances or create a new package

(e.g. Control_Instances) as shown below. If selecting an existing package, press OK. If creating a new

package, press Enter and then OK.

6. In Step 2, select the workbook and worksheet containing the instance table (Figure 39). An example

screenshot of the instance creation utility at the end of this step is shown below.

Figure 42: ParaMagic instance creation utility

Figure 43: Creating a new package to store instances

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 59

7. In Step3, you will connect the SysML model to the Excel spreadsheet, i.e. specify the mapping

between the properties of the SysML block that you want to instantiate and the columns in the Excel

spreadsheet. There are 2 ways to specify this mapping:

a. Implicit – In this mode, the header row of the Excel table has the names of block properties. For

the table shown in Figure 39, this is not the case. The property names Power and Weight in the

header row (Row 4) are not the same as names of value properties of the Control block (PCon and

WCon). Check Implicit if this is the case for your models, as shown in Figure 43. If the Implicit

option is selected, specify the header row number (e.g. 4).

b. Explicit – In this mode, users have to explicitly specify what columns in the Excel table

correspond to the block properties. For e.g. specify column B and C for PCon and WCon as

shown below. Specify the columns that contain the instance names (e.g. A) and the first instance

row (e.g. 4).

Figure 44: ParaMagic instance creation utility after specifying package and workbook/worksheet information

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 60

8. Next, select “All” if you would like to generate block instances for all the rows in the Excel table

(until ParaMagic finds an empty row), or specify the number of instances (e.g. 4) as shown in Figure

42 above.

9. Press OK.

10. You should now see instances generated in the SysML model, as shown below in

Figure 45: ParaMagic instance creation utility after specifying explicit mapping between Excel columns and value

properties

Figure 46: SysML instances created by ParaMagic from Excel table

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 61

11. When generating instances from Excel spreadsheets, ParaMagic also establishes a connection

between instance slots and the cells in Excel tables. This allows users to automatically read/write

values from/to Excel spreadsheets to/from SysML instances. For e.g. right click the instance C1 in the

MagicDraw containment tree (shown above) and select ParaMagic > Excel > Setup. You can see the

connection between the slots (PCon and WCon) of C1 and the corresponding cells in Excel tables. If

you update values in the Excel table and invoke ParaMagic > Excel > Read on the individual SysML

instances or the owning package (e.g. Control_Instances), ParaMagic will update the values in the

SysML instance model.

12. If you attempt to generate instances from Excel tables in a package that already contains instances

with the same names as you are attempting to generate, ParaMagic will offer to overwrite the

instances in the package.

Figure 47: Instances generated by ParaMagic are connected to Excel tables for value sync.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 62

8.2.1.2 Creating instances of a complex block

1. Suppose you have a complex block with several part/reference/shared properties as shown below for

the SatelliteSystem block. In this example, the SatelliteSystem block has four part properties.

2. First, generate instances for each of the primitive blocks from Excel tables, such as instances of

Control, PowerSystem, Propulsion, and Instruments blocks from the tables shown in Figure 49 below.

Use steps 5-9 of the process outlined in section 8.2.1.1 above. Example SysML instances generated

for the table in Figure 49 are shown in Figure 64 below.

Figure 48: Example of a complex block (SatelliteSystem)

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 63

3. Now suppose you have an Excel table (as below) that shows different instances of the SatelliteSystem

and the corresponding instances of the Control, PowerSystem, Propulsion, and Instruments block.

Figure 49: Excel tables for Control, PowerSystem,

Propulsion, and Instrumentation instances

Figure 50: Instances generated from Excel tables for

Control, PowerSystem, Propulsion, and Instrumentation

Figure 51: Excel table showing instances of a complex block (e.g. SatelliteSystem)

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 64

4. To generate instances of the SatelliteSystem block, right click on the block in the MagicDraw

Containment tree, and select ParaMagic > Excel > Create Instances from Excel. You will see the

ParaMagic instance creation utility, as shown below.

5. For generating instances of complex blocks, you must use the Explicit mode. Set Num Instances (e.g.

4), Instance Name Column (e.g. F) and 1
st
 Instance Row (e.g. 18) based on the Excel table (e.g.

Figure 65).

6. Specify the Excel columns corresponding to the part properties of SatelliteSystem block, such as

column G for Pro1 (Propulsion instances), column H for Ins1 (Instruments instances), and so on.

7. For each part property, select the package in the SysML model that contains the instances used in the

Excel table. For e.g. the package Control_Instances contains instances of the Control block (C1, C2,

C3, and C4). ParaMagic will search these packages to find instances based on the names used in the

Excel table (e.g. PR1, I1, C1, and P1). If unsuccessful, the part properties (slots) for the

SatelliteSystem instances will not be populated.

8. Press OK

Figure 52: ParaMagic instance creation utility – creating instances of SatelliteSystem block

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 65

9. The MagicDraw containment tree should show you all the four SatelliteSystem instances and

references to corresponding instances of Control, Power, Instrumentation, and Propulsion blocks, as

shown below. Note that this instance model corresponds to the Excel table shown in Figure 51 above.

10. Similar to generating instances for primitive blocks, ParaMagic also creates Excel connections

between slots (corresponding to value properties) and Excel tables when generating instances for

complex blocks. Invoke ParaMagic > Excel > Read from Excel or Write to Excel to read/write values

from/to Excel tables to/from SysML model.

Figure 53: MagicDraw Containment tree after generating instances of SatelliteSystem

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 66

11. Updating instance structure in Excel tables and re-generating: If you change relationships

between instances in the Excel table, such as changing the Instruments and Control block instances

associated with SatelliteSystem S1 to I2 and C2 (originally I1 and C1) respectively, and try to re-

generate SysML instances from the updated table in the same package that contains instances S1-S4,

ParaMagic will offer to update the SysML instances. For the example shown below, ParaMagic will

update the values of slots Ins1 and Con1 of the instance S1 to I2 and C2 respectively.

8.2.2 Update SysML Instance Model Values from Excel Spreadsheets

If you generate instances from Excel tables, as demonstrated in section 8.2.1, ParaMagic® sets up

connections between the generated instances and the Excel tables for automated reading/writing of values

between SysML instance slots and Excel cells. However, if you have manually created block instances in

a SysML model and intend to connect them to Excel spreadsheet(s) to read/write values, follow the steps

described below.

For reference, the Orbital tutorial provided with ParaMagic
TM

 presents a usage of this feature. Refer to the

tutorial document and the Orbital model at locations shown below.

 ParaMagic® tutorial document : <MD_Root>\samples\ParaMagic\Tutorials\Tutorials.pdf

 Orbital model : <MD_Root>\samples\ParaMagic\Tutorials\Orbital

8.2.2.1 Operation

Follow the steps below to connect slots of manually created instances to Excel spreadsheets.

Step 1. Initialize slot

Each slot that needs to interact (read/write) with Excel spreadsheets must be initialized. Initialization

ensures that the slots are visible in the MagicDraw containment tree from where ParaMagic® operations

can be invoked. For initializing a slot:

a) Double click an instance in the MD containment tree. A specification window opens as shown

below in Figure 55.

b) Select a slot that needs to interact with Excel spreadsheets and click on Create Value button. For

example, slot a2 is selected in Figure 55.

c) After initialization, a slot will appear with one empty value, as shown for slot a1 in Figure 55.

Initialized slots will also be visible in the containment tree under the parent instance, as shown for

slots a1, a2, and a3 of Instance1 in Figure 56.

Satellite Systems

Name Pro1 Ins1 Con1 Psy1

S1 PR1 I2 C2 P1

S2 PR2 I2 C2 P2

S3 PR3 I3 C3 P3

S4 PR4 I4 C4 P4

Figure 54: Updating instance structure in Excel table

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 67

For multi-valued slots (e.g. slots that store an array of numbers), the initialization process is the

same as above. For initializing multi-valued slots that are not inputs (givens) for ParaMagic
TM

simulations, see step 9 below.

Step 2. Setup Excel slots to interact with Excel worksheet

To setup slots to interact with Excel, right click on the slot (or its parent instance) in the MD

containment tree and select ParaMagic > Excel > Setup, as shown in Figure 57 below. The ParaMagic

Excel Setup utility appears, as shown in Figure 58 below.

Figure 55: Initialize slots

Figure 56: MagicDraw Containment tree after initialization of slots.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 68

The ParaMagic® Excel Setup utility can be invoked for a slot, instance, or a package for which a

default instance
17

 has been selected. When invoked, users can see the entire instance model in the

context of the selected instance. Then, users can click on specific slots and link them to Excel

spreadsheets.

17 For details, see the command Util > Set default instance in section 7.1

Figure 57: Launch Excel Setup utility for an instance/slot

Figure 58: ParaMagic Excel Setup utility

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 69

If Excel connection-related information is already populated for the slot, corresponding values will be

shown in the setup window as shown in Figure 58 above.

Step 3. Specify Excel connection for slots

Specify Excel connection information for all slots that need to be linked to Excel spreadsheets. To do

this, repeat steps a-f below for all such slots.

a) Select the slot in the instance model shown in the setup utility (left pane). For example, the slot

AveragePowerWindow is shown selected in Figure 58.

b) Specify the location of the Excel workbook associated with the slot in the Workbook File field. If

the workbook file is located in the same folder as the MagicDraw file (mdzip), only the name of

the workbook file needs to be specified (with the extension .xls or .xlsx). Alternatively, click the

Browse button to select the workbook file. Note that storing Excel workbooks with the

MagicDraw file enhances the portability of the model. The MagicDraw model file and the

workbook files can be distributed together without system-specific folder location settings.

c) Select the worksheet associated with the slot. If you selected the workbook file using the Browse

button, the list of spreadsheets in that file is automatically available for selection. However, if you

manually entered the workbook file, click on the Refresh button to populate the list of

spreadsheets in the workbook file. Note that if the workbook file is not found, the list of available

worksheets will be empty.

If multiple slots owned by a single instance are linked to the same workbook and worksheet, it is

preferable to specify workbook and worksheet information at the instance level and then select

the Use Default Worksheet option for all such slots. Figure 59 below shows an example where

the Excel workbook and worksheet is specified for the instance mis. The slot

AveragePowerWindow (owned by this instance) uses the worksheet.

Excel worksheet specified for the instance Slot uses the default worksheet

Figure 59: Specifying workbook and worksheet at the instance level and using it for slots

Note that ParaMagic® allows you to propagate default workbook and worksheet settings through

the instance hierarchy. For e.g. workbook and worksheets specified at the top-level instance (e.g.

mis) can be used as defaults for all lower level slots and instances (at any depth in the model).

d) Specify the cell range (in the selected worksheet) associated with the slot. Cell range can be

specified using cell name or address.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 70

If the cell range is specified using a name, the following rule applies:

i) The scope of the name should be the worksheet and not the workbook. For example, as

shown in Figure 60 below, cell range C6:C15 in Sheet1 is named as PowerUsage. The scope

of this name is the worksheet Sheet1.

If the cell range is specified using cell address, the following rules apply:

i) Cell range must be specified using the following Excel syntax:

(1) for multi-valued slots: <first cell address>:<last cell address>. For example, if a multi-

valued slot is to be associated with cells from A2 to A10, cell range should be specified

as A2:A10.

(2) for single-valued slot: <cell address>. For example, if a single-valued slot is associated

with cell A2, cell range should be specified as A2.

ii) Cell ranges must be specified without the worksheet reference. For example, cell range A2 to

A10 in MySheet worksheet should be specified as A2:A10 and not as MySheet1!A2:A10.

iii) A cell range should not have special characters (including whitespaces) that Excel cannot

recognize. The following are examples of syntactically incorrect cell ranges: A2 : A10, A 2 : A

10, A$%2:A*9

iv) For associating a SysML slot to an Excel spreadsheet using ParaMagic®, cell ranges must be

contiguous and correspond to a single column/row. For example, A2:A10 and A2:F2 are

contiguous and correspond to single column and row cell ranges respectively; A2:B10 is a

contiguous but not a single column/row cell range; and A2:A10,C2:C10 is a valid but non-

contiguous cell range.

v) ParaMagic® ignores the order in which the first and last cells are specified in the cell range

field. For example, A10:A2 is treated the same as A2:A10.

e) Specify the access mode (Read or Write).

If the Access Mode=Read, ensure that the workbook file is saved before the Excel Read operation

is executed. If Access Mode=Write, ensure that the workbook file is closed before the Excel

Write operation is executed. As shown in Figure 58, slots that are setup to read from spreadsheets

are shown in blue and slots that are setup to write to spreadsheets are shown in red.

f) Press the Apply button to save slot setup information to the MagicDraw model. Those slots for

which the Excel connection settings have been changed but not saved to the MagicDraw model

(Apply button) are shown in italics.

Figure 60: Specify cell range using name

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 71

The table below summarizes the commands that can be issued from the ParaMagic® Excel Setup utility.

Command Description
Browse Opens a file browser for selecting an Excel workbook file (.xls or .xlsx)
Refresh Creates a list of spreadsheets available in the specified workbook file
Apply Saves the Excel connection settings to the MagicDraw model
OK Saves the Excel connection settings to the MagicDraw model (Apply) and closes

the setup utility
Clear Removes the Excel connection settings for the subject slot
Cancel Closes the ParaMagic® Excel Setup utility without saving the Excel connection

settings

Note: Since the workbook and worksheet information is specified for a particular slot, different slots in an

instance may be connected to different workbooks/worksheets and setup to Read/Write information

from/to Excel spreadsheets.

Step 4. Execute Excel Read / Write operation for the setup slot

Once a slot is setup, Excel Read or Write operations can be executed by right clicking the slot and

selecting ParaMagic > Excel > Read from Excel or Write to Excel menus. When the Read or Write

operation is executed successfully, corresponding information messages pop-up as shown in Figure

61.

During the Excel Read operation, the causality of all slot values read from Excel is automatically

changed to “given” (from “undefined”) in accordance with Table 1. Once a slot has been connected

to an Excel worksheet, the Excel Read/Write operations can be invoked whenever new values are to

be read from (or written to) the Excel worksheet.

Steps 1-4 above demonstrate the basic use of ParaMagic
TM

 to (1) connect SysML instance slots to

Excel spreadsheets, and (2) read/write values from/to spreadsheets to/from instance slots. Additional

steps for more efficient operations are described below.

Message shown for successfully reading slot values from Excel

Message shown for successfully writing slot values to Excel

Figure 61: Information messages for successful execution of ParaMagic® Excel Read/Write operations

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 72

Step 5. Execute Excel Read/Write operation for an instance or an instance package

Excel Read/Write operations can be invoked for a slot (as demonstrated above), an instance, or a

package containing instances. To invoke Excel Read/Write operation on an instance (or instance

package), right click the instance (or instance package) and select ParaMagicExcelRead from

Excel or Write to Excel menu.

If the Excel Read operation is invoked on an instance, ParaMagic® will execute the Excel Read

operation for all slots of that instance that are setup to read from Excel (Access Mode=Read).

Similarly, if the Excel Write operation is invoked on an instance, ParaMagic® will execute the Excel

Write operation for all slots of that instance that are setup to write to Excel (Access Mode= Write).

If the Excel Read/Write operation is invoked on a package, ParaMagic® will perform the Excel

Read/Write operation for all instances in the instance package.

Step 6. Initializing slots with empty values before solving with ParaMagic.

If a slot value is intended to be a target or an undefined variable for ParaMagic® solution, users are

still required to initialize the slot (as shown in step 1 above). If the slot value is an array, then n values

of that slot must be initialized (where n is the array size). This can be a cumbersome process. Using

ParaMagic®, users can initialize a slot with n empty values by setting them up to read values from n

empty cells in an Excel spreadsheet and then executing the Excel Read operation. If the slot values do

not have any pre-assigned causality, the Excel Read operation will set their causality to "undefined".

For those empty values that are the targets, users can change the causality from “undefined” to

“target” in the ParaMagic
TM

 browser.

The table below summarizes the ParaMagic® commands for Excel setup/read/write, the model

elements for which these commands may be issued, their behavior, and the response message on

successful execution of commands. These commands are available under ParaMagic > Excel menu.

Command Arguments Description Messages
Setup Slot Opens the Excel Setup utility for the

instance owning the slot. The subject

slot is selected.

After the Apply (or OK) button is

pressed, the setup values are

saved to the model. No messages

pop-up after the save operation

is completed.

Instance Opens the Excel Setup utility for the

instance. The subject instance is

highlighted in the instance model.

Package Opens the Excel Setup utility for the

default instance in this package. To

set a default instance, see the

command Util > Set default instance

in section 7.1

Read Slot Reads values from an Excel

spreadsheet and populates slot values

if slot access mode=Read. The

causality is set to "given" for all slot

values read from Excel

 If slot values are read

successfully from Excel and the

causality assignment is

successful, the response message

states "Successful in reading

values from Excel and assigning

default causalities."

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 73

 If slots values are successfully

read from Excel but the causality

assignment is unsuccessful, the

response message states

“Successful in reading values

from Excel but unsuccessful in

assigning causalities."

 If slot values are not read from

Excel, response messages

(indicating the problems) are

shown in the MagicDraw

Message window.

Instance Executes the Excel Read operation for

all slots in the instance.

A successful response message

is show only when the Excel

read and causality assignment

operation is successful for all

slots (with read access mode) in

the instance. Else, no response

message is shown.

Package Executes the Excel Read operation for

all slots of all instances in the

package.

A successful response message

is shown only when the Excel

read and causality assignment

operation is successful for all

slots of all instances in the

instance package. Else, no

response message is shown.
Write Slot Writes slot values to an Excel

spreadsheet if slot access mode =

Write.

 If slots values are successfully

written to Excel, the response

message states "Successful in

writing values to Excel".

 If slot values are not written to

Excel, response messages

indicate the problem.

Instance Executes the Excel Write operation

for all slots in the instance.

A successful response message

is shown if the Excel Write

operation is successful for all

slots of the instance.

Package Executes the Excel Write operation

for all slots of all instances in the

package.

A successful response message

is shown only if the Excel Write

operation is successful for all

slots of all instances in the

instance package.
Create
Instances
from Excel

Block Generates instances of the block from

data in Excel tables

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 74

8.2.2.2 Features and Specific Behavior

1) Both versions of MS Excel files are supported—Excel 97-2003 files (.xls extension) and Excel 2007

files (.xlsx extension).

2) Both numeric and text (string) values can be read from Excel or written to Excel. If the block value

property corresponding to a slot is typed by:

a) value type Real or its subtype, ParaMagic® will read/write only numeric values for that slot.

b) value type String or its subtype, ParaMagic® will read/write values for that slot as strings.

c) any other value type, ParaMagic® will behave the same as (b) above.

3) ParaMagic® operations are one-time read/write operations and not a live connection. If values in

Excel workbooks (associated with slots in MagicDraw) are updated, the Read operation must be re-

invoked on all slots to read updated values after the Excel spreadsheet has been saved. Similarly, if

slot values in SysML instance model (associated with values in Excel workbooks) are updated, the

Write operation must be re-invoked to write updated values from SysML model to Excel spreadsheets

after the workbooks have been closed.

4) Empty cells in an Excel spreadsheet are read as empty slot values in the Excel Read operation.

Similarly empty slot values are written as empty cells in Excel spreadsheet in the Excel Write

operation. Note that cells that look empty (no contents) may be null (esp. if they have not stored a

value previously). In an Excel read operation, null cells are not read as empty slot values.

5) If a slot has “n” values and it is associated with “k” cells in a spreadsheet then the behavior of Excel

Read and Write actions invoked on the slot are specified in the table below.

Excel Read operation
n>=k n<k

 Only the first k values of the slot (has n values)

are updated with the values in k cells in the

Excel spreadsheet.

 The remaining values of the slot—(k+1)
th
 value

to the n
th
 value—are deleted.

 After a read operation, causality is assigned

based on Table 1 – if slot entry has a value, then

set to given or keep as target. If slot entry is

null, then assign/keep as undefined.

 The n values in the slot are updated with the

values in first n (out of k) cells in the Excel

spreadsheet.

 New slot values are created for values of (n+1)
th

to the k
th
 cell in the Excel spreadsheet.

 Causality is assigned based on Table 1 – if slot

entry has a value, then set to given or keep as

target. If slot entry is null, then assign/keep as

undefined.

Excel Write operation
n>k n<k

Excel write operation will not work if n is not equal to k. This is to avoid

overwriting existing cells in spreadsheets for ambiguous cases such as these.

8.2.2.3 Limitations

1) The Excel workbook needs to be closed before the Excel Write operation is invoked on a slot or

instance or instance package.

2) The Excel Write operation will not create a new workbook file if it does not exist.

3) ParaMagic® ignores the order in which the first and last cells are specified in the cell range field. For

example, A10:A2 is treated the same as A2:A10.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 75

Note: Although ParaMagic® is designed to ensure that existing features in Excel workbooks, such as

charts, formulas, macros, and pivot tables, are preserved when reading and writing values from/to

workbooks, all of these features are not tested with ParaMagic®. As an extra caution, ParaMagic®

creates a backup of Excel spreadsheets, at the same location as the original spreadsheet, before the Write

operation.

8.3 ParaMagic - MATLAB Connection

The ParaMagic – MATLAB connection (PM-MC) enables users to wrap MATLAB functions and scripts

as SysML constraint blocks and use them in parametric models as regular constraint properties.

ParaMagic
TM

 solves for the constraints by invoking MATLAB functions/scripts when required.

MATLAB scripts are commonly used to invoke and execute Simulink models. Since PM-MC can solve

for constraints that wrap MATLAB scripts, it can be used to execute Simulink models and feed the results

of the execution back into SysML models.

The HomeHeating tutorial provided with ParaMagic is an example usage of the PM-MC feature. It is

located under <MD_Root>\samples\ParaMagic\Tutorials\HomeHeating.

A MATLAB script
18

 is used for automatically executing a series of MATLAB commands. Users that

perform computations on MATLAB command line write MATLAB scripts which can be loaded in the

MATLAB environment to achieve the same effect. A script has no input and output arguments. However,

a script may create and access variables in MATLAB workspaces. In contrast, a MATLAB function
18

accepts input arguments and has output arguments.

MATLAB scripts and functions are written in MATLAB files—commonly known as M-files. These files

also have a .m extension like Mathematica files. Users should be careful to distinguish a .m file native to

Mathematica versus a .m file native to MATLAB. A MATLAB M-file containing a script is known as a

script M-file, and a MATLAB M-file containing a MATLAB function is known as a function M-file.

If all relations in your SysML model are MATLAB relations (i.e. they wrap function or script M-files),

then ParaMagic
TM

 does not require Mathematica to solve the model.

In the following two sections, the process of wrapping MATLAB scripts M-files and function M-files

using constraint blocks is demonstrated. Once wrapped, ParaMagic can invoke MATLAB

scripts/functions when the constraints need to be solved. Step 1 and 0 below are common to using script

and function M-files.

Step 1. Check MATLAB installation on your computer

Follow the steps below to ensure that MATLAB is installed correctly on your computer.

1) Go to the command prompt. On Windows, you may do this by selecting Run from the Start menu and

typing the command cmd and pressing the OK button.

2) Type matlab at the command line. This should launch MATLAB on your computer.

3) Before wrapping MATLAB function or script M-files, ensure that they are correct, i.e. they have

valid MATLAB syntax and provide valid results for valid inputs. To do this, run the script M-file on

MATLAB installed on your computer, or call the function M-file from your MATLAB workspace.

18 MATLAB scripts and functions: http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f7-38085.html

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f7-38085.html

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 76

Once MATLAB scripts/functions have been tested to work with MATLAB, then they are ready to be

used with ParaMagic
TM

.

Step 2. Specify default location of MATLAB function/script M-files

It is preferred that users provide a default location (folder) of MATLAB function/script M-files. If the M-

file location is not specified with the constraint block (that wraps the M-file), ParaMagic will search for

the M-file in this default location. This behavior can used to your advantage if all (or most) of your M-

files are at the same location (say X). If so, you do not need to specify the M-file location for each

constraint block that wraps it but only specify location X in the manner described below.

To specify the parent folder location, follow the steps below:

1) Launch ParaMagic
®
 Settings window in MagicDraw (Options > Environment > ParaMagic Settings),

as shown in Figure 62 below.

2) Specify location of the folder as the value of the variable MATLAB M-File Default Location, as shown

in Figure 62 below.

Note: The location of a MATLAB M-file can also be specified with each constraint block that wraps the

M-file.

Figure 62: Specify default location of MATLAB M-files in ParaMagic Settings window

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 77

Step 3. Specify a timeout for expecting results from MATLAB functions and script executions

The ParaMagic.ini file includes a variable that specifies the timeout interval for ParaMagic
TM

 when

waiting for MATLAB functions and scripts to finish execution. By default, this is set to 180 seconds as

shown below.

com.intercax.xaitools.solver.timeout.in.seconds=180

Users are recommended to specify an upper-bound value for this variable depending on the time typically

taken to execute the MATLAB functions/script that they intend to use with ParaMagic
TM

. Once the

timeout is reached, ParaMagic
TM

 stops expecting results from MATLAB but does not terminate the

MATLAB execution process.

Step 4. Define a constraint block to “wrap” MATLAB script/function M-file

1) Locate the xfwExternal_Matlab_Script or xfwExternal_Matlab_Function constraint block in the

Constraint Block Library package loaded with the ParaMagic Profile. The former is setup to wrap

script M-files and the latter is setup to wrap function M-files.

2) Copy the xfwExternal_Matlab_Script or xfwExternal_Matlab_Function constraint block to your

package and rename it (say X).

3) Double click on the new constraint block X. This will open the Specification window as shown

below.

4) By default, this constraint block is setup to wrap a Matlab M-file with 2 inputs and 1 output.

Add/remove input parameters depending on the number of inputs required by your M-file. Only 1

output parameter is allowed (single-valued or a single-dimensional array). For M-file functions, the

input parameters and output parameters correspond to the arguments passed to and the value returned

by the function. For M-file scripts, the input parameters correspond to those value properties that need

to be passed to the script and the output parameters correspond to those value properties that are to be

populated at the end of the script execution. See section 8.3.1 for specifics related to Matlab scripts.

Figure 63: Constraint block specification window – constraint parameters view

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 78

5) Click on the Constraints menu in the Constraint Block specification window. By default, a constraint

has been specified. Modify this constraint equation per your requirements. The general format of the

constraint relation is:

<out_param> = xfwExternal(matlab, <script_or_function>, <name_of_ M-file>,
<in_param_1>,…)

where:

- <out_param> is the name of the output parameter (result computed during execution and to be

read back into SysML instance)

- <script_or_function> is set to scriptascii (for MATLAB scripts) or function (for MATLAB

functions)
- <name_of_M-file> is the name of the MATLAB M-file without the extension (.m)

- <in_param_1>,… is a comma-separated list of input parameters (given values to be sent from

SysML instances to MATLAB script/function)

Terms enclosed in < > are variables that can have different names, while those not enclosed in < > are

keywords/constants that should not be changed.

For example, Figure 69 below shows a constraint block with five parameters that wraps a MATLAB

M-file script (demoscriptasciisimulink.m). These parameters correspond to the given and computed

variables in the script. For example, values of row, col, outtemp, and daycyc variables are given, and

the value of the variable cost is computed during the script execution.

In ParaMagic
TM

, both input and output parameters of the constraint block wrapping a M-file could be

single-valued or multi-valued (e.g. array).

Step 5. Specify the location of the folder containing the M-file

To specify the location of the folder containing the M-file (to be wrapped by the subject constraint block),

follow the steps below:

Figure 64: Constraint block specification window – constraints view

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 79

1) Click on the icon highlighted below or double click the constraint specification in the MD

containment tree.

2) The action in the previous step will open the specification window for the constraint. Click on the

Tags menu as shown below and select ParaMagic Profile in the Profile list. This will display all

stereotypes (and their tags) that are provided by the ParaMagic Profile for constraints.

3) Select the working_dir tag and click on the Create Value button, as shown below.

Figure 65: Invoking the constraint specification window from the constraint view

Figure 66: Specifying the location of M-file - selecting the ParaMagic profile

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 80

4) Specify the location of the folder containing the M-file. For example, if the M-file is located under

C:\Data\My_MATLAB_Files, specify the following value for the working_dir tag:

C:\\Data\\My_MATLAB_Files.

Note that you only need to specify the location of the folder containing the M-file. The name of the

M-file is specified in the constraint specification.

Step 6. Define constraint properties typed by the wrapped constraint block

After defining a constraint block that wraps MATLAB M-files, constraint properties could be defined for

blocks whose values properties are to be related using the subject MATALB function/script. These

constraint properties should be typed by the constraint block created in Step 4 above. When creating

SysML parametric models using parametric diagrams, the constraint parameters of the constraint property

should be connected to the value properties of the block. For example, as shown in Figure 71, a constraint

property SHH (of type SimulinkHomeHeating constraint block) is defined for a block and its constraint

parameters outtemp, daycyc, row, col, and cost are connected to a block’s value properties

Outdoors.Temp, DailyCycle, OutputRow, OutputColumn, and DailyCost respectively.

Figure 67: Specifying the location of M-file – selecting the tag to populate

Figure 68: Specifying the location of M-file by populating the tag

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 81

Figure 69: SysML constraint block to wrap MATLAB scripts

Figure 70: Defining constraint specification for a constraint block to wrap MATLAB script M-file

Figure 71: SysML constraint property typed by a constraint block (that wraps MATLAB scripts) and used in a

SysML parametric diagram

8.3.1 Using MATLAB scripts

Unlike MATLAB functions, scripts do not have input arguments and output/return values. ParaMagic
TM

uses intermediate input and output files to transfer SysML instance values (givens) from MagicDraw to a

MATLAB script before executing the script, and to transfer results obtained by executing the script to

SysML instance values (targets). To use MATLAB scripts with ParaMagic
TM

, follow the steps below

after finishing Step 6 above.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 82

Step 7. Setup script M-file to read/write values from/to SysML instance model

Since MATLAB scripts do not have input and output arguments, users must add commands to the

beginning/end of the script to read/write values from/to SysML instance model. Follow the steps below to

setup your script M-file to read values from input.txt file and write results to output.txt file.

1) Add commands to achieve the following at the beginning of your script M-file

a) Define an array variable in the MATLAB script that will hold values of input parameters.

b) Load the input.txt file to populate this variable.

c) Assign the values to variables in the script

For example, a variable insel is defined to contain values loaded from input.txt file. Then, four values

contained in the insel variable are assigned to four variables in the script.

inSel= load('input.txt');

o1=inSel(1);
o2=inSel(2);
TempOutsite=inSel(3);
Amplitute=inSel(4);

Note that the order in which the values are written to the input.txt file is the order in which input

parameters are listed in the constraint specification of the constraint block. As an example, for the

constraint block in Figure 69, the input.txt will contain values of the variable in the following order:

row, col, outtemp, daycyc.

2) Add a save command at the end of your script M-file to save the value of the solved variable—

corresponding to the output parameter of the constraint property—in output.txt file. For example, to

save the value of variable a, the following command is used.

save('output.txt','a','-ASCII');
exit

The exit command ensures that the MATLAB session ends after script execution. This will avoid

having multiple sessions of MATLAB running as the SysML model is solved multiple times.

ParaMagic
TM

 writes SysML instance values corresponding to the input parameters of a constraint property

to a text file (input.txt) located in the same folder as the MATLAB script M-file. To import the value of

the variables computed from script execution to the SysML instance model, ParaMagic reads a text file

(output.txt) containing the variable value and located in the same folder as the MATLAB script M-file.

Users do not need to worry about the input.txt and output.txt files created for transferring values

between MagicDraw and MATLAB. These are automatically created and managed by ParaMagic
TM

.

8.3.2 Using MATLAB functions

For using ParaMagic
TM

 with M-file functions, ensure that in Step 4 above, the constraint specification—

for the constraint block that wraps the M-file function—uses the keyword function (as shown below)

instead of scriptascii.

<out_param> = xfwExternal(matlab, function, <name_of_function_M-file>, <in_param_1>,…)

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 83

Figure 72 and Figure 73 below illustrate an example of a MATLAB function (DemoAddition) with 2

input parameters wrapped in a constraint block, which is then used to type constraint properties in a

SysML parametric model.

Figure 72: SysML constraint block to wrap MATLAB function

Figure 73: SysML constraint property typed by a constraint block (that wraps a

MATLAB function) and used in a SysML parametric diagram

Follow the step below after completing Step 6 above.

Step 6. Export return values to an output.txt file.

Add a save command at the end of the MATLAB function to save the value of the output/return variable

in output.txt file. The code snippet below shows the save and exit commands added at the end of the

definition of function DemoAddition in a function M-file.

function z = DemoAddition(x,y)
z=x+y;
save('output.txt', 'z', '-ASCII')
exit

Note that functions can have input arguments and hence PM-MC does not require users to read values

from an input.txt file (as in scripts). In the example below, the save command is added at the end of a

function DemoAddition that returns the sum of two numbers. The sum is saved to output.txt file. As in

the case of scripts, input parameters and return values of M-file functions could be single-valued or a

multi-valued (e.g. array) but they cannot be complex data structures (such as an array of arrays, etc.).

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 84

99 TTRRAADDEE SSTTUUDDIIEESS

With ParaMagic
®
, users can easily setup and run trade studies on their existing SysML models. The

capability to run trade studies on SysML parametric models allows users to compute performance,

reliability, cost, and other measures-of-effectiveness—especially those used to verify requirements—for a

large set of system alternatives at each development phase, and then select the best-in-class alternatives

for the next development phase. With ParaMagic
®
, trade studies can be now be performed from the

earliest stages of system development. The overall process for setting up and running trade studies is as

below.

1. Verify that your existing SysML instance model can be solved using ParaMagic
®
.

2. Setup a trade study

a. Identify trade study inputs, outputs, and constants.

b. Link inputs and outputs to Excel spreadsheets. ParaMagic
®

reads values of trade study input

variables for all scenarios from linked Excel spreadsheets. After completion, the values of trade

study output variables for all scenarios are written to the linked spreadsheets.

c. Specify number of scenarios

3. Run trade study

9.1 Operation

The detailed steps for setting up and running trade studies on SysML models are as follows. The process

described below assumes that you have setup a SysML schema and instance model in the same manner

that you do for regular ParaMagic
®

solving purposes—see the Tutorials document for details.

Step 1. Verify that your SysML instance model can be solved in ParaMagic
®

The series of steps below are used to check if your SysML schema and instance models are structurally

valid can be solved. Solving an instance model is similar to running a single scenario in a trade study.

1) Browse the instance model: Right click on the instance package and select ParaMagic Browse. If

the ParaMagic browser opens up, this implies that the schema and instance are structurally valid.

2) Solve the instance model: Click on the Solve button in the ParaMagic
®

browser. See section 7.1 for

details. If the model solves correctly, it implies that your instance model

3) Update SysML instance model: Click on the Update to SysML button in the browser. Check that the

target slot values are updated in the SysML instance model.

Step 2. Prepare Excel spreadsheet(s) with values of trade study input variables
1) Trade study variables are arranged in columns, and the scenarios are specified in rows.

All values of a trade study input variable should be in columns, such that each row in those columns

contains values for a single scenario. In the spreadsheet shown below, NumPlanes, NumCrew, and

Fuel Supply / day are the trade study input variables, and Miles scanned / 24 hrs is the output

variable. Note that values for input/output variables are in columns. Each row, starting with row 3,

represents the different trade study scenarios that will be solved using ParaMagic
®
.

Figure 74: Trade study scenarios must be organized in rows—one scenario per row

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 85

For multi-valued variables (e.g. arrays), the values for each scenario should be in contiguous

columns. For example, the values of Input Variable 1 and Input Variable 2 are arranged in columns

for each scenario. Hence for scenario 1, Input Variable 1 = {1,2,3} and Input Variable 2 = {1,1,1}.

Figure 75: Values of multi-valued variables are specified in contiguous columns for each scenario

2) Trade study variables may be linked to different workbooks/worksheets, and may have the first

scenario specified in different rows for each variable, unlike as shown in the figures above.

Step 3. Connect trade study variables to Excel spreadsheets

ParaMagic uses the following logic to identify trade study input and output variables, and constants:

a) Slots with causality “given” and Excel access mode “Read” are treated as trade study input variables.

b) Slots with causality “target” and Excel access mode “Write” are treated as trade study output

variables.

c) Slots with causality “given” but with no connection to Excel are treated as trade study constants.

Hence, the value(s) specified for these slots are repeated for each trade study scenario.

Causalities were assigned to all slots in Step 1 above. In this step, you will link slots corresponding to

trades study inputs and output to Excel spreadsheets. To do this, follow the steps below:

1) Launch Excel setup: Right click on the instance package and select ParaMagic Excel Setup. This

will launch the Excel setup utility, as shown below.

Figure 76: Use the Excel setup utility to link trade study inputs and outputs to spreadsheets

2) Connect trade study inputs/outputs to Excel spreadsheets: To do this, follow the steps below for each

slot corresponding to a trade study input or output variable.

a) Click on the slot in the instance tree on the left pane.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 86

b) Specify the Excel workbook and worksheet that contains scenario values for this slot, as shown in

Figure 77 below.

Figure 77: Use the Excel setup utility to link trade study inputs and outputs to spreadsheets

c) Set the cell range to the cell(s) that contain value(s) for the first scenario. For single-valued slots,

the cell range is a single cell. For multi-valued slots, the cell range is a set of contiguous cells in a

single row. As shown above, the cell range for NumberPlanes is set to B3 (spreadsheet shown in

Figure 74). Similarly, the cell range for Input Variable 2 and Output Variable 1 (spreadsheet

shown in Figure 75) would be E3:G3 and H3:J3 respectively.

d) Set the access mode to

i) Read for slots corresponding to trade study input variables.

ii) Write for slots corresponding to trade study output variables.

e) Click on the Apply button.

Since trade study input/output variables are setup to read/write from Excel, they are shown in

blue/red color, as shown in Figure 78 below. For more details on how to use the Excel setup

utility (PM-EC feature), refer to section 8.2.

Figure 78: Slots setup to read (write) from Excel are shown in blue (red) color

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 87

Step 4. Specify number of scenarios

Right click on the instance package and select ParaMagic Trade Study Setup. Specify the number of

scenarios in the dialog box, as shown below. The value (say n) specified for the number of scenarios will

be used by ParaMagic
®

to construct n scenarios by reading the values in n rows (in spreadsheets

connected to input variables) starting with the first row specified for each input variable.

Figure 79: Specify number of scenarios for a trade study

Step 5. Run trade study

Ensure that all spreadsheets connected to trade study output variables are closed. Then, right click on the

instance package and select ParaMagic Trade Study Run. The trade study progress window (as

shown in Figure 80) indicates the specific scenario being run and the core solver being used.

Figure 80: Trade study progress window

Figure 81: Message to indicate completion of a trade study

Completion of a trade study is indicated by the message above (Figure 81).

Step 6. View trade study outputs and perform post-processing

Open spreadsheets connected to trade study output variables to see results. You can use Excel for post-

processing the values, such as for computing statistical metrics or plotting output variables against input

variables.

Note that trade studies can be performed with either Mathematica or OpenModelica as a core solver.

SysML parametric models executed in trade studies may include all types of relations as solved using

regular ParaMagic
®

operation except for custom Mathematica relations that create plots for each

scenario
19

.

Parametric models executed during trade studies could be using constraint blocks wrapping MATLAB M-

files (section 8.3) and custom-defined Mathematica functions (cMathematica – section 8.1).

19 Plots created for a scenario will overwrite those created for the previous scenario.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 88

9.2 Limitations

The trade study capability in ParaMagic
®

has the following limitations:

1) A trade study is based on a SysML instance model which represents the structure of all scenarios. The

scenarios may differ in the values assigned to the slots but not the number of instances in the SysML

instance model. Figure 82 illustrates a simple SysML schema model that represents a system

composed of 1 or more parts. The figure also shows a SysML instance model that conforms to the

schema model. The instance model represents a system (system101) with 4 components. If one were

to setup a trade study for this example, it would be setup for the instance model. All scenarios will

represent systems with 4 components. The scenarios may vary in slot values, i.e. the values of the

slots max_length, part_number, and weight (of the component instances comp1, comp2, comp3, and

comp4) may be different in the scenarios.

SysML Schema SysML Instance structure

Figure 82: Trade studies in ParaMagic
TM

 work on a fixed SysML instance structure

2) Values of trade study input variables must be explicitly specified for all scenarios in Excel

spreadsheets. Specification of values as intervals and automated generation of scenarios by creating

combinations of these intervals is not supported in this version of ParaMagic
®
.

3) Trade study runs are functionally similar to batch execution of a set of pre-defined scenarios.

Automated generation of scenarios based on techniques to explore the design space is not supported.

Contact us (info@intercax.com) for tailored interfaces to commercial tools, such as Isight
20

 and

ModelCenter
21

, that provide design space exploration and optimization capabilities.

4) Plotting capabilities, such as the generation of single factor plots, interaction effects matrix plots, and

carpet plots for trade studies, are not available natively with this version of ParaMagic
®
. Since trade

study outputs are written to Excel spreadsheets, users may leverage the extensive plotting and post-

processing capabilities of Excel.

20 Isight: http://www.simulia.com/products/isight.html
21 ModelCenter: http://www.phoenix-int.com/software/phx_modelcenter.php

mailto:info@intercax.com
http://www.simulia.com/products/isight.html
http://www.phoenix-int.com/software/phx_modelcenter.php

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 89

1100 PPAARRAAMMAAGGIICC
®®

 SSIILLEENNTT ((NNEEWW))
The ParaMagic

®
 Silent feature is being introduced in this version (ParaMagic

®
 18.0). It allows users to

invoke ParaMagic
®
 in silent mode from their MagicDraw plugins and scripts if they have

ParaMagic
®
 plugin installed with a valid license. The ParaMagic

®
 Silent feature provides two main

automation capabilities, as listed in sections 10.1 and 10.2 below.

10.1 Invoking ParaMagic® in silent mode from plugins and scripts

This capability allows users to invoke ParaMagic
®
 in silent mode from their own MagicDraw plugins and

scripts. Here, “silent mode” implies that ParaMagic
®
 can be used to validate and solve SysML parametric

models, and update the SysML instance model with solved results without launching the ParaMagic
®

browser UI.

10.1.1 Java API calls to invoke ParaMagic® Silent

To invoke ParaMagic
®
 in silent mode from your MagicDraw plugins and scripts, follow the steps below:

(1) Add the jar files in MagicDraw lib folder (<MD_Root>\lib) to your classpath. You may have already

done this for your plugin/script development.

(2) Add the icax_paramagic.jar file to your classpath. This file is located in the ParaMagic
®
 plugin

installation folder, e.g. <MD_Root>\plugins\com.intercax.paramagic\icax_paramagic.jar

(3) Add the pb_logging.xml file under your source (src) folder. This file is the log4j configuration for

logging messages when running ParaMagic
®
 Silent and is provided with the demo plugin (see section

10.1.2).

(4) In your code, import the ParaMagic_Silent class, as below:
import com.intercax.paramagic.plugin.slient.ParaMagic_Silent;

(5) The ParaMagic_Silent class provides the following three static methods. See Figure 83 for code

snippet. This code snippet is from the demo plugin that is included with ParaMagic
®
 installation (see

section 10.1.2).

 validate (InstanceSpecification is, File logFile, File resultFile, int intervalToCheckResults)

When invoked on a SysML instance specification, it validates the instance structure and the associated block
structure and parametric model.

 validateAndSolve (InstanceSpecification is, File logFile, File resultFile, int intervalToCheckResults)

When invoked on a SysML instance specification, it performs validation (as above) and if the validation is

successful, it solves the parametric models in the context of the instance.

 validateAndSolveAndUpdate (InstanceSpecification is, File logFile, File resultFile, int

intervalToCheckResults)

When invoked on a SysML instance specification, it performs validation and solving (as above) and if the
solving is successful, it updates the SysML instance model with the solved results, assuming that the instance
model is editable, e.g. it is not locked by a user in the Teamwork server or is not a part of a read-only module.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 90

All three methods have the same inputs:

 InstanceSpecification is
This is the SysML instance specification for which ParaMagic® is being invoked. When working with
ParaMagic® in normal / UI mode, this is the instance for which you launch the browser (ParaMagic > Browse
action).

 File logFile

This is the log file where the messages related to validation, solving, and updating SysML instance models will
be written. If null, a log file with the name paramagic_silent will be written to the ParaMagic Working Folder,
as shown in section 7.4, Figure 37.

 File resultFile

This is the result file where the solved results (targets only) will be written. If null, a result file with the name
paramagic_silent_targets will be written to the ParaMagic Working Folder, as shown in section 7.4, Figure 37.

 int intervalToCheckResults

This is the time interval in milliseconds after which ParaMagic continuously checks if the solving is done and
results are available.

All three methods have the same return type (boolean) – true if the method executes successfully,

false otherwise. Here successful execution implies if validation was successful, or validation and

solving were successful, or validation and solving and updating were successful.

//Specify the log file. If null, paramagic_silent.log file in the ParaMagic Working Folder is

used

File logFile = new File("C:\\Users\\InterCAX\\MyParaMagic\\MyParaMagic.log");

//Specify the results file. If null, paramagic_silent_targets.log file in the ParaMagic Working

Folder is used

File resultFile = new File("C:\\Users\\InterCAX\\MyParaMagic\\MyParaMagic_Results.log");

int doneCheckingInMilliSeconds = 10000;

boolean solveSuccessful = ParaMagic_Silent.validateAndSolveAndUpdate(is, logFile, resultFile,

doneCheckingInMilliSeconds);

if (solveSuccessful) {

JOptionPane.showMessageDialog(MDDialogParentProvider.getProvider().getDialogParent(),"ParaMagic

Silent ran successfully.", "Information", JOptionPane.INFORMATION_MESSAGE);

}

else {

 JOptionPane.showMessageDialog(MDDialogParentProvider.getProvider().getDialogParent(),

"ParaMagic Silent did not run successfully.", "Warning", JOptionPane.WARNING_MESSAGE);

}

Figure 83: Use ParaMagic
®

 Silent feature to invoke ParaMagic
®
 from your plugins and scripts

(6) If your ParaMagic

®
 license has expired and you try to invoke the static methods in ParaMagic_Silent,

they will return false and you will see the following message written out to the ParaMagic Silent log

file.

2014-08-07 16:42:40 WARN - ParaMagic plugin license has expired. Contact your administrator or No Magic to
renew your license.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 91

10.1.2 Install, Test, and Review the ParaMagic Silent Demo plugin

A demo plugin with source code is provided with ParaMagic
®
 to illustrate how to invoke the ParaMagic

®

Silent feature. It is located in the Other Examples folder (section 5.3) after the ParaMagic
®
 plugin

installation:

 Folder: <MD_Root>\samples\ParaMagic\Other_Examples\

 File: com.intercax.paramagic.demo.zip

Follow the steps below to review and test the demo plugin.

1) Extract the demo plugin zip file (com.intercax.paramagic.demo.zip). It will create a new folder with

the same name (com.intercax.paramagic.demo).

2) To view the source code, see the src folder. It includes the following:

a) pb_logging.xml file is the log4j configuration file that is need for configuring ParaMagic Silent

logging. It should be included in the src folder of your MagicDraw plugins and scripts.

b) ParaMagicDemoPlugin.java class under com\intercax\paramagic\demo\plugin folder. This

single class has the plugin definition, including the actions. See the nested class

ParaMagic_SilentThread that is instantiated and run from the actionPerformed(..) method of

ParaMagicSilentAction class

3) Copy the folder com.intercax.paramagic.demo to the MagicDraw plugins directory, e.g.

<MD_Root>\plugins. Close and restart MagicDraw as an Administrator. This will install the demo

plugin.

4) Open any sample model that comes with ParaMagic
®
, e.g. LittleEye model in the Tutorials folder.

Right click on the System01 instance and you can see ParaMagic Silent Demo plugin with menus that

invoke the three static methods of ParaMagic_Silent class documented in section 10.1.1.

ParaMagic
®
 18.0 beta Users Guide

Copyright © 2014 InterCAX LLC. All Rights Reserved. 92

Figure 84: Demo plugin to illustrate the use ParaMagic
®
 Silent feature

10.2 Invoking ParaMagic® in silent mode from the ParaMagic® plugin

ParaMagic
®
 can be invoked in silent mode from the ParaMagic

®
 plugin itself. This is useful when users

want to solve and update the SysML instance model with a single mouse click without launching the

ParaMagic
®
 Browser. See the command menus: ParaMagic > Util > Silent > Solve and ParaMagic > Util

> Silent > Solve and Update described in section 7.1.

1111 CCOOPPYYRRIIGGHHTT

11.1 Copyright statement from InterCAX LLC

This User Guide and the software described therein are copyrighted. No part of this user guide or the

described software may be copied, reproduced, translated, or reduced to any electronic medium or

machine-readable form without the prior written consent of InterCAX LLC.

11.2 Liability disclaimer from InterCAX LLC

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS "AS IS" AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

